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Part 1 : Euler approximation for
DDSDEs of Neymytskii-type

Based on the joint work[1] with Michael Röckner and Xicheng Zhang

[1] Hao, Z., Röckner, M. and Zhang, X., Euler scheme for density dependent stochastic differential
equations. arXiv:2007.15426.
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DDSDE

I Let (Ω,F ,P; (Ft)t>0) be a complete filtration probability space.

I Let (Wt)t>0 be a d-dimensional standard Ft-Brownian motion.

I Denote byP(Rd) the space of all probability measures over (Rd,B(Rd)),
which is endowed with the weak convergence topology.

I Let b : R+ ×Rd ×P → Rd and σ : R+ ×Rd ×P → Rd ⊗Rd be two
measurable functions.

I Consider the following distribution dependent stochastic differential equa-
tion (abbreviated as DDSDE):

dXt = b(t,Xt, µt)dt+ σ(t,Xt, µt)dWt, X0
(d)= µ0, (1.1)

where µt = P ◦X−1
t .
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DDSDE and NFPE

I By Itô’s formula, under some general conditions on the coefficients, for
any ϕ ∈ C∞b (Rd), µt satisfies the following nonlinear Fokker-Planck
equation (abbreviated as NFPE):
ˆ
Rd
ϕ(x)µt(dx) =

ˆ
Rd
ϕ(x)µ0(dx) +

ˆ t

0

ˆ
Rd

(Lµsϕ)(s, x)µs(dx)ds,

(1.2)

where for (t, x) ∈ R+ × Rd and aij :=
∑d

k=1 σikσjk,

(Lµtϕ)(t, x) := 1
2

d∑
i,j=1

ai,j(t, x, µt)∂i∂jϕ(x) +
d∑
i=1

bi(t, x, µt)∂iϕ(x).
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DDSDE and NFPE

I Existence of DDSDE⇒ Existence of NFPE;
I Assume that

(i) µt ∈ P(Rd) for all t ∈ R+.
(ii) ∀i, j = 1, .., d,

ˆ T
0

ˆ
Rd

[|aij(t, x, µt)|+ |bi(t, x, µt)|]µt(dx)dt <∞ ∀T > 0.

(iii) t→ µt is weakly continuous.

By the superposition principle (see Section 2 in [1] and Theorem 2.5 in
[2]), we have

I Existence of NFPE⇒ Existence of DDSDE;

I Weak uniqueness of DDSDE⇒ Uniqueness of NFPE.

[1] Barbu, V., Röckner, M., From Fokker-Planck equations to solutions of distribution dependent
SDE, to appear in Annals of Probability. https://doi.org/10.1214/19-AOP1410.

[2] Trevisan, D. Well-posedness of multidimensional diffusion processes with weakly differentiable
coefficients. Electron. J. Probab. https://doi.org/10.1214/16-EJP4453.
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Nemytskii-type

I In the special case, a, b only works on measures with density respect to
the Lebesgue measure dx and there are b̄ : R+ × Rd × R → Rd and
σ̄ : R+ × Rd × R→ Rd ⊗ Rd such that

dXt = b̄(t,Xt, ρt(Xt))dt+ σ̄(t,Xt, ρt(Xt))dWt, X0
(d)= µ0,

where ρt(x) := dµt
dx (x), which is called the Nemytskii-type.

I This time, NFPE can be rewritten (in the sense of Schwartz distributions)
as

∂tρt(x) = 1
2

d∑
i,j=1

∂i∂j [āij(t, x, ρt(x))ρt(x)]− div[b̄(t, x, ρt(x))ρt(x)],

lim
t↓0

ρt = ν0 weakly,

where āij =
∑d

k=1 σ̄ikσ̄jk, which is a quasilinear parabolic equation.

I In the sequel, we only consider the DDSDE of Nemytskii-type. For sim-
plicity, denote by σ, a, b the σ̄, ā, b̄.
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Our model

I For simplicity, we consider an easy DDSDE of Nemytskii-type:

dXt = b(t,Xt, ρt(Xt))dt+
√

2dWt, X0
(d)= µ0, (1.3)

and NFPE:
∂tρt(x) = ∆ρt(x)− div[b(t, x, ρt(x))ρt(x)], lim

t↓0
ρt = µ0 weakly.

(1.4)

Definition 1
Let µ0 ∈ P(Rd). We call a filtered probability space (Ω,F ,P; (Ft)t>0)
together with a pair of processes (X,W ) thereon a weak solution of SDE
(1.3) with initial distribution µ0, if

I P ◦X−1
0 = µ0 and W is a d-dimensional Ft-BM;

I for each t > 0, ρt(x) := P◦X−1
t

(dx)
dx (x) and

Xt = X0 +
ˆ t

0
b(s,Xs, ρs(Xs))ds+

√
2Wt, P− a.s.

Question: In what conditions of b, the existence and uniqueness hold?
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Known results

2018 (Barbu and Röckner, Ann. Probab. 48(2020))

I Assume that µ0 has a density with respect to the Lebesgue measure,
b(t, x, u) = b(x, u) and one of the followings holds:

(i) b ∈ Cb(Rd × R) ∩C1(Rd × R), b(x, 0) ≡ 0, ∀x ∈ Rd;
(ii) b ∈ Cb(R) ∩C1(Rd), b(0) = 0.

Then there exists a weak solution to DDSDE (1.3).

2019 (Barbu and Röckner, arXiv:1909.04464)

I Assume that µ0 has a density ρ0(x) with respect to the Lebesgue mea-
sure, b(t, x, u) = b(x, u), b ∈ Cb(Rd ×R)∩C1(Rd ×R), b(x, 0) ≡ 0

sup{|∂rbi(x, r)|;x ∈ Rd, i = 1, 2, |r| 6M} 6 CM , ∀M > 0,

and, for

δ(r) := sup |∂xb(x, r)|;x ∈ Rd,

we have δ ∈ Cb(R). For each ρ0 ∈ L∞ ∩ L1, the NFPE (1.4) has at
most one distributional solution ρ ∈ L∞(R+;L1) ∩ L∞(R+ × Rd).

I Actually, in the papers above, they mainly concentrate on the case ai,j 6=
δi,j with some assumptions on a. For simplicity, we assume ai,j = δi,j
and only show the assumption of b.
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I Other results about DDSDE of Nemytskii-type:
I Barbu, V., Röckner, M., Probabilistic representation for solutions to nonlinear Fokker-Planck

equations, SIAM J. Math. Anal., 50 (2018), 4246-4260.

I Barbu, V. and Röckner, M., Solutions for nonlinear Fokker-Planck equations with measures
as initial data and McKean-Vlasov equations. arXiv:2005.02311.

I ......

I In all the above works, they obtained the results by solving the associated
NFPE and then by the superposition principle.

New Question: Is it possible to use a purely probabilistic method to
construct a weak solution?

I In fact, we shall use Euler’s scheme to construct a weak solution.
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Euler scheme

I Let T > 0, N ∈ N and h := T/N . For t ∈ [0, h), define

XN
t := X0 +

√
2Wt.

I For t ∈ [kh, (k + 1)h), we inductively define XN
t by

XN
t := XN

kh + (t− kh)b(kh,XN
kh, ρ

N
kh(XN

kh)) +
√

2(Wt −Wkh),

where ρNkh(x) is the distributional density of XN
kh.

I All in all, XN
t solved the following Euler scheme:

XN
t = X0 +

ˆ t

0
bN (φN (s), XN

φN (s))ds+
√

2Wt,

where φN (s) := jh for s ∈ [jh, (j + 1)h) and

bN (t, x) = 1t>hb(t, x, ρNφN (s)(x)).
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Main results

Theorem 2

Assume that b is bounded measurable and

lim
t→t0

lim
u→u0

sup
|x|<R

|b(t, x, u)− b(t0, x, u0)| = 0, ∀R > 0. (1.5)

(Existence) For any T > 0 and initial data µ0 ∈ P(Rd), there are a
subsequence Nk and a weak solution Xt to DDSDE (1.3), so that for any
bounded measurable f and t ∈ (0, T ],

lim
k→∞

Ef(XNk
t ) = Ef(Xt). (1.6)

Moreover, Xt admits a density ρt with

lim
k→∞

ˆ
Rd
|ρNkt (x)− ρt(x)|dx = 0. (1.7)

(Uniqueness) Assume that µ0(dx) = ρ0(x)dx with ρ0 ∈ L1 ∩ Lq for some
q ∈ (d,∞], and there is a constant C such that for all t, x, u1, u2,

|b(t, x, u1)− b(t, x, u2)| 6 C|u1 − u2|. (1.8)

Then weak and strong uniqueness hold for DDSDE (1.3).
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Remark

I We emphasize that the continuity of b in the time variable is no neces-
sary for the existence of weak solution. Here we need it because we are
considering the Euler scheme.

I If the uniqueness holds, then limit (1.6) and (1.7) hold for the whole
sequence.

I By the well-known results about heat kernel estimate, there are constants
C > 0 and λ > 1 such that for all (t, x) ∈ R+ × Rd,

ρt(x) 6 Ct−d/2
ˆ
Rd
e−
|x−y|2
λt µ0(dy).

I Rewrite

b(t, x, µ) = b̄(t, x, ρ(x)),

where ρ(x) := dµ
dx (x). Notice that we can’t compare the condition

b(t, x, ·) is continuous in P(Rd) and the condition b̄(t, x, ·) is contin-
uous in R.
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Corollary 3

Let µ0 ∈ P(Rd).

(i) Assume b is bounded and measurable such that (1.5) holds. Then there
is a weak solution ρt to NFPE (1.4) in the distribution dense with´
Rd ρt(x)dx = 1 and

0 6 ρt(x) 6 Ct−d/2
ˆ
Rd
e−
|x−y|2
λt µ0(dy).

(ii) Assume that (1.8) holds and that µ0(dx) = ρ0(x)dx with ρ0 ∈ (L1 ∩
Lq)(Rd) for some q ∈ (d,∞]. Then the solution in assertion (i) is
unique.
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Existence

I Recall

XN
t = X0 +

ˆ t

0
bN (φN (s), XN

φN (s))ds+
√

2Wt, (1.9)

where φN (s) := jh for s ∈ [jh, (j + 1)h) and

bN (t, x) = 1t>hb(t, x, ρNφN (s)(x)).

I Firstly, we have

E|XN
t −XN

s |2p 6 Cp|t− s|p,

for some unimportantCp which is independent withN . By Kolmogorov’s
criterion, Prokhorov’s theorem and Skorokhod’s representation theorem,
the law of XN is tight and there is a new probability space with (X̃, W̃ )
and (X̃N , W̃N ) thereon which has the same distribution as (XN ,W )
such that

(X̃Nk , W̃Nk )→ (X̃, W̃ ), a.s.

for some subsequence Nk. For simplicity, we denote Nk by N .

I It is easy to see that WN and W are BMs and X̃N satisfies the Euler
scheme (1.9) with W = W̃N .
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Existence

I On the other hand, we shall obtain some properties of ρNt .

I When X0 = x, we denote by XN
t (x) := XN

t . Let

g(t, x) := 1
(4πt)d/2

e−
|x|2

4t .

Lemma 4 (Duhamel’s formula)
For each t ∈ (0, T ] and x ∈ Rd, XN

t (x) admits a density pNx (t, y) which
satisfies the following equality:

pNx (t, y) = g(t, x− y) +
ˆ t

0
E

[
bN (φN (s), XN

φN (s))∇g(t− s, y −XN
s )

]
ds.

Moreover, ρNt (y) =
´
Rd p

N
x (t, y)µ0(dx).

Theorem 5 (Lemaire-Menozzi(2010), EJP)
For any T > 0, there is a constant C = C(d, ‖b‖∞, T ) such that for all
N ∈ N, t ∈ (0, T ] and x, y ∈ Rd,

pNx (t, y) 6 Cg(4t, x− y).
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Existence

I By these two results, it is easy to see that ρN is uniformly bounded and
Hölder in [1/M, T ]×Rd for anyM > 1. Therefore, by Ascolli-Arzela’s
theorem, there is a function ρt(x) and subsequence {Nk}k with

lim
k→∞

sup
t∈[1/M,T ]

sup
|x|6M

|ρNkt (x)− ρt(x)| = 0, ∀M > 0. (1.10)

Moreover, ρt is the density of X̃t. For simplicity, denote N by Nk.

I X̃N
t = X̃0 +

´ t
h
b(φN (s), X̃N

φN (s), ρ
N
φN (s)(X̃N

φN (s)))ds+
√

2W̃N
t

↓ ↓ ↓ (1.5) & (1.10) ↓

I X̃t = X̃0 +
´ t
h
b(s, X̃N

φN (s), ρs(X̃N
φN (s)))ds +

√
2W̃t

↓ ↓ ↓ mollify b & Krylov’s estimate ↓

I X̃t = X̃0 +
´ t

0 b(s, X̃s, ρs(X̃s))ds +
√

2W̃t.
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Uniqueness

I It is well-known that the following SDE is well-posed whenB is bounded
measurable (see [1])

dXt = B(t,Xt)dt+ dWt.

I Weak uniqueness of DDSDE(1.3)⇒Strong uniqueness of DDSDE(1.3).

I For any two solution X1
t and X2

t of DDSDE(1.3) with the same initial,
we only need to prove they have the same density. Denote by ρit(x) the
density of Xi

t for i = 1, 2.

I ρ1
t (x) and ρ1

t (x) are also two solutions of NFPE (1.4). Noting that b
is Lipschitz, we shall use Gronwall’s inequality to get the uniqueness.
However, we have to deal with

´ T
0 ‖ρ

1
t‖2L∞(Rd)dt. If we only use the

Duhamel’s formula in last page, it will blow up.

I By the heat kernel estimate, we have

‖ρ1
t (·)‖L∞ 6 Ct−d/2‖

ˆ
Rd
e−
·−y
λt ρ0(y)dy‖L∞

. t−d/(2q)‖ρ0‖Lq .

I Therefore, if q > d, we obtain the uniqueness.
[1] Veretennikov, A., On the strong solutions of stochastic differential equations. Theory Probab.
Appl., 24 (1979), 354-366.
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α-stable process

I It is a well-known that every Lévy process Lt has a Lévy symbol Ψ, i.e.

EeizLt = etΨ(z), ∀z ∈ Rd.

I Let α ∈ (0, 2), a Rd-valued Lévy process Lt is called a d-dimensional
α-stable process if the Lévy symbol Ψ has the following representation:

Ψ(z) =
ˆ
Rd

[eizx − 1− izx1|x|<1]ν(dx),

where ν is called Lévy measure of Lt and

ν(A) :=
ˆ
Sd−1

µ(dω)
ˆ ∞

0
1A(rω) dr

r1+α , ∀A ∈ B(Rd),

Sd−1 := {x ∈ Rd; |x| = 1} and µ is a finite measure on (Sd−1,B(Sd−1)).
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α-stable process

I In the sequel, all µ is non-degenerate, i.e.

inf
ω̃∈Sd−1

ˆ
Sd−1

|ω̃ · ω|2µ(dω) > 0.

I For simplicity, we assume that µ is symmetric, i.e. µ(A) = µ(−A).

I The infinitesimal generator L α of α-stable process Lt is

L αf(x) := p.v.
ˆ
Rd

(f(x+ y)− f(x))ν(dy),

where p.v. is Cauchy principle value. It is a nonlinear operator.

Example 6

I When µ is the Lesbegue measure on Sd−1, ν(dy) = 1/|y|d+αdy and
Ψ(z) = −C|z|α with some absolute constant C > 0.

I This time, we call Lt a standard d-dim α-stable process.

I Denote by ∆α/2 the infinitesimal generator of Lt.
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Cylindrical α-stable process

I Let {Lit}di=1 be i.i.d. 1-dim standard α-stable processes.

I As you know, (B1
t , ..., B

d
t ) is a d-dim BM when {Bit}di=1 are i.i.d. 1-dim

BMs. Is (L1
t , ..., L

d
t ) a d-dim standard α-stable process?

I The answer is NO!

Example 7

I Let Lt := (L1
t , ..., L

d
t ). Then µ =

∑d

i=1 δei where δ is the Dirac measure
and ei = (0, .., 1ith, .., 0),

ν(dx) =
n∑
k=1

δ0(dx1) · · · δ0(dxk−1) dxk
|xk|1+α δ0(dxk+1) · · · δ0(dxd).

I This time, we call Lt a cylindrical d-dim α-stable process.

I Notice that the Lévy measure of cylindrical α-stable process is even not
absolute to Lesbegue measure.

I Cylindricalα-stable process is much more singular then the standard one.
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SDEs driven by α-stable process

I Consider the following SDEs:

dXt = b(Xt)dt+ σ(Xt)dLt,

where b : Rd → Rd, σ : Rd → Rd ⊗ Rd and Lt is a α-stable process
and following parabolic equation

∂tu = L α
σ u+ b · ∇u+ f,

where

L α
σ f(x) := p.v.

ˆ
Rd

(f(x+ σ(x)y)− f(x))ν(dy).

I Let f ≡ 0 and Xx
t be the solution SDE with Xx

0 = x. By Itô’s formula,
u(· − s,Xx

· ) is a martingale and

Eu0(Xx
t ) = Eu(t,Xx

0 ) = u(t, x).

I In the sequel, we assume that it is elliptical, i.e.

inf
x

detσ(x) > 0.
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SDEs driven by cylindrical α-stable process

I Also consider the Euler scheme:

dXN
t = b(XφN (t))dt+ σ(XφN (t))dLt.

I When σ and b are Lipschitz, it is easy to obtain the well-posed result and
rate of convergence of Euler approximation for it. what if b is only in
some Hölder space?

I It is well-known that ODE Xt =
´ t

0 b(Xs)ds may be ill-posed when b
is only Hölder continuous.

I To answer this question, I will introduce Schauder’s estimate and Zvonkin’s
transform.
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Schauder’s estimate

I Let ai,j and bk be measurable functions from Rd to R, where i, j, k ∈
{1, 2, ..., d}. Define vector-valued function b = (b1, b2, ..., bd), and con-
sider the following elliptic equation:

d∑
i,j=1

ai,j∂i∂ju+ b · ∇u = f, (2.1)

where b · ∇u :=
∑d

i=1 bi∂iu. Suppose that the source term f ∈
Cβ(Rd).

I Assume ai,j are elliptic,
d∑

i,j=1

ξjai,jξj > λ|ξ|2, ∀ξ ∈ Rd,

and the relevant norms of coefficients are all bounded by another constant
Λ > 0, i.e.,

d∑
i,j=1

‖ai,j‖Cβ(Rd) +
d∑
i=1

‖b‖Cβ(Rd) 6 Λ.

I Schauder’s estimate: there is a positive constant c = c(d, β, λ,Λ) such
that for all solution u ∈ C2+β(Rd) of (2.1),

‖u‖C2+β(Rd) 6 c(‖u‖L∞(Rd) + ‖f‖Cβ(Rd)).
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Zvonkin’s transform

I For simplification, we consider the following SDE:

dXt = b(Xt)dt+ dWt, (2.2)

where b : Rd → Rd is Hölder and Wt is a standard BM.

I We consider the following backward PDE:

∂tu+ ∆u+ b · ∇u+ b = λu, u(T ) = 0.

By Schauder’s estimate,

‖u‖L∞
T

C2+β 6 CT (λ)‖b‖Cβ CT (λ)→ 0 (λ→∞), (2.3)

where L∞T C2+β := L∞([0, T ]; C2+β(Rd)).

I Then, Φt(x) := u(t, x) +x is a diffeomorphism on Rd for some large λ
and Yt := Φt(Xt) satisfies the following SDE

dYt = ∇u(t,Φ−1
t (Yt))dWt + dWt + λu(t,Φ−1

t (Yt))dt.
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Zvonkin’s transform
I We consider the following Euler scheme:

dXN
t = b(XφN (t))dt+ dWt,

and let λ = 0.
I By Itô’s formula, we have

Φt(Xt)− Φt(XN
t ) = Φs(Xs)− Φs(XN

s )

−
ˆ t

s

[u(r,Xr)− u(r,XN
r )]dWr

+
ˆ t

s

[b(XN
φN (r))− b(XN

r )][I−∇u(r,XN
r )]dr.

I Noting that

E|XN
t −XN

φN (t)|p 6 CN−p/2,

and u, ∇u are Lipschitze, by some Gronwall-type inequality, we obtain
the rate of

E|XN
t −Xt|p.

I A natural question is whether Schauder’s estimates hold when we replace
the local operator aij∂i∂j by some non-local ones?
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Well-known results

I Actually, there are many known results.
F For the following parabolic equation:

∂tu = L α
σ u+ b · ∇u+ f, u0 = 0.

2012 (Silverstre, Indi- ana Univ. Math. J., 61(2012))
I α ∈ (0, 2), L α

σ = ∆α/2 and b ∈ Cβ with α+ β > 1.

‖u‖L∞
T

Cα+β 6 CT ‖f‖L∞
T

Cβ .

2019 (Chaudru, Menozzi and Priola, J. Funct. Anal. 128 (2020))
I α ∈ (1/2, 1), σ ≡ I and b ∈ Cβ with α+ β > 1.
F For the following elliptic equation:

L α
σ u+ b · ∇u = f.

2010 (Priola, Osaka J. Math., 49 (2012))
I α ∈ (1, 2), −Ψ(z) > c|z|α, σ ≡ I and b ∈ Cβ with α+ β > 1.

2019 (Ling and Zhao, arXiv:1907.00588)
I α ∈ (0, 1), ν(dy) = 1/|y|d+αdy and σ, b ∈ Cβ with α+ β > 1.

2019 (Kühn, Integral Equations Operator Theory 91(2019))
......
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dXt = b(Xt)dt+ σ(Xt−)dLt,

dXN
t = b(XN

φN (t))dt+ σ(XN
φN (t))dLt.

I Based on the Schauder’s estimate for the non-local equation, there are
some works about the Euler scheme.

2017 (Mikulevičius and Xu)
I Assume α ∈ [1, 2), ν(dy) = ρ(y)/|y|d+α with c 6 ρ(y) 6 c−1,
∀y ∈ Rd, ρ(λy) = ρ(y), σ is bounded Lipschitz and b, ρ ∈ Cβ with
β > 1− α/2. For any p ∈ (0, α), they have

E
[

sup
06t61

|XN
t −Xt|p

]
6 CN−pβ/α.

I Notice that they can not deal with the cylindrical case and α > 1. Con-
dition β > 1− α/2 is to guarantee the well-posed for the SDE.

2017 (Huang and Liao, Stochastic Analysis and Applications, 36(2018))
I Assume α ∈ [1, 2), −Ψ(z) > c|z|α and b, ρ ∈ Cβ with β ∈ (1 −
α/2, 1). For any p ∈ (0, α/β), they have

E
[

sup
06t61

|XN
t −Xt|p

]
6 CN−pβ/α.

I Notice that they also can not deal with the case α < 1.
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I In fact, α < 1 is the supercritical case. When α < 1, the transport item,
which has no regularity, dominates the diffusion items L α

σ :

∂tu = L α
σ u+ b · ∇u+ f, u0 = 0. (2.4)

I There is no results about the Schauder’s estimate for it when b ∈ Cβ , Lt
is cylindrical and σ 6= I.

Theorem 8 (Schauder’s estimates)
Suppose that α ∈ (1/2, 1), µ is non-degenerate, σ is elliptical, σ ∈ Cγ with
γ ∈ (0, 1], b ∈ Cβ with β ∈ (1− α, αγ), and α+ β /∈ N. For any T > 0,
there is a constant c > 0 and a unique classical solution u of PDE (2.4)
satisfying,

‖u‖L∞
T

(Cα+β(Rd)) 6 c‖f‖L∞
T

(Cβ(Rd)).

I Condition α > 1/2 comes from the condition β ∈ (1 − α, αγ) which
means

1− α < α⇒ α > 1/2.
I We used a method based on Littlewood-Paley operators to prove it which

can be find in [1] and [2].
[1] Hao, Z., Wu, M. and Zhang, X., Schauder estimates for nonlocal kinetic equations and
applications. J. Math. Pures Appl. 140 (2020) 139-184.
[2] Hao, Z., Wang, Z. and Wu, M., Schauder’s estimates for nonlocal equations with singular
Lévy measures. Available at arXiv:2002.09887.
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Corollary 9

Assume α ∈ (1/2, 1), µ is non-degenerate, σ is elliptical, σ is Lipschitz and
b ∈ Cβ with β ∈ (1− α/2, 1). For any p ∈ (0, α) and T > 0, there is a
constant C such that for all N ∈ N

E
[

sup
t∈[0,T ]

|XN
t −Xt|p

]
6 CN−pβ .
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Thanks for your attention!
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