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Part 1 : Euler approximation for
DDSDEs of Neymytskii-type

Based on the joint work[*) with Michael Réckner and Xicheng Zhang

[1] Hao, Z., Rockner, M. and Zhang, X., Euler scheme for density dependent stochastic differential
equations. arXiv:2007.15426.
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Introduction

Let (2, .7, P; (%:)1>0) be a complete filtration probability space.
Let (W:)t>0 be a d-dimensional standard .%;-Brownian motion.

Denote by P(R?) the space of all probability measures over (R, B(R?)),
which is endowed with the weak convergence topology.

Letb : R xRYx P > Rando : Ry x R? x P — R? @ R? be two
measurable functions.

Consider the following distribution dependent stochastic differential equa-
tion (abbreviated as DDSDE):

d
AX¢ = b(t, Xe, )t + o (t, X, pe)dWe,  Xo 2 o, (11

where p; = IP’oXt’l.
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Introduction
» By It6’s formula, under some general conditions on the coefficients, for

any p € C?(Rd), ¢ satisfies the following nonlinear Fokker-Planck
equation (abbreviated as NFPE):

. . it p
[ e@mian) = [ o@mn + [ [ (L) omdods
Jrd JRrd Jo JRrd

(1.2)
where for (t,z) € Ry x R% and a;; := ZZZI TikO ks

(L) (6,2 = 5 S i (1, 1)0idso() + 3 bilt, 2, o) Dip().

i,j=1 i=1
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» Existence of DDSDE =- Existence of NFPE;
» Assume that Introduction

(i) pt € P(R?) forallt € Ry.
(i) Yi,5 =1, ...d,

T
[ ] st l + btz )l (do)de < o 9T > 0.
Jo R

(iii) t — pt is weakly continuous.
By the superposition principle (see Section 2 in [1] and Theorem 2.5 in
[2]), we have

» Existence of NFPE = Existence of DDSDE;

» Weak uniqueness of DDSDE =- Uniqueness of NFPE.

[1] Barbu, V., Réckner, M., From Fokker-Planck equations to solutions of distribution dependent
SDE, to appear in Annals of Probability. https://doi.org/10.1214/19-A0P1410.

[2] Trevisan, D. Well-posedness of multidimensional diffusion processes with weakly differentiable
coefficients. Electron. J. Probab. https://doi.org/10.1214/16-EJP4453.
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» In the special case, a, b only works on measures with density respect to
the Lebesgue measure dx and there are b : Ry x R? x R — R? and
7 :Ry x RY x R — R? @ R such that

Introduction

- _ d
AX, = b(t, Xo, pe(X))dt + 5(t, Xo, pe(X))AWe,  Xo 2 po,

where p;(z) := £ (z), which is called the Nemytskii-type.

dz
» This time, NFPE can be rewritten (in the sense of Schwartz distributions)
as
Dipr(x Z 0:0; (a5 (1, w, pu(2))pe()] — div[b(t, &, pe(x)) pe ()],

1,j=1
lim p: = vo weakly,
10
— d - — . . g . .
where @;; = Z w1 Tik0jk, Which is a quasilinear parabolic equation.

» In the sequel, we only consider the DDSDE of Nemytskii-type. For sim-
plicity, denote by o, a, b the 7, a, b.
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» For simplicity, we consider an easy DDSDE of Nemytskii-type:
d
AX, = b(t, Xe, pe(Xe))dt + V2dWe, Xo 2 po,  (1.3)

Introduction

and NFPE:
Ope(z) = Ape(z) — div[b(t, z, pi(x))pe ()], ltif([)l pr = po weakly.
1.4)
Definition 1 Cylindrical
Let p10 € P(R?). We call a filtered probability space (2, .7, P; (F¢)i>0) a-stable

together with a pair of processes (X, W) thereon a weak solution of SDE
(1.3) with initial distribution g, if
» Po X(;l = pp and W is a d-dimensional .%;-BM;
=il
» foreacht > 0, pi(z) := %z(dz)(x) and

t
Xy :Xo+/ b(s, Xs, ps(Xs))ds + V2Wi, P—a.s.
0

Question: In what conditions of b, the existence and uniqueness hold?
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2018 (Barbu and Rockner, Ann. Probab. 48(2020))

» Assume that pio has a density with respect to the Lebesgue measure,
b(t, z,u) = b(x, u) and one of the followings holds:

(i) b€ Cy(R? x R) N CHR? x R), b(x,0) = 0,V € R%;
(i) b€ Cp(R) N CL(RY), b(0) = 0.

Then there exists a weak solution to DDSDE (1.3).
2019 (Barbu and Rockner, arXiv:1909.04464)

> Assume that po has a density po(z) with respect to the Lebesgue mea-
sure, b(t, z,u) = b(z,u), b € Cp(R? x R) N C*(R? x R), b(z,0) =0

Known results

sup{|0,b"(z,7)|;z € R, i =1,2,|r| < M} < Cn, VM >0,
and, for
8(r) := sup |9ub(x,7)|;z € RY,
we have § € Cy(R). For each pg € L N L', the NFPE (1.4) has at

most one distributional solution p € L>(Ry; L') N L*° (R4 x RY).

» Actually, in the papers above, they mainly concentrate on the case a; ; #
d;,; with some assumptions on a. For simplicity, we assume a; ; = ;,;
and only show the assumption of b.
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» Other results about DDSDE of Nemytskii-type:

» Barbu, V., Réckner, M., Probabilistic representation for solutions to nonlinear Fokker-Planck Known results
equations, STAM J. Math. Anal., 50 (2018), 4246-4260.

» Barbu, V. and Rockner, M., Solutions for nonlinear Fokker-Planck equations with measures
as initial data and McKean-Vlasov equations. arXiv:2005.02311.

» In all the above works, they obtained the results by solving the associated
NFPE and then by the superposition principle.

New Question: Is it possible to use a purely probabilistic method to
construct a weak solution?

» In fact, we shall use Euler’s scheme to construct a weak solution.
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» LetT >0, N € Nand h :=T/N. Fort € [0, h), define
X = Xo +V2W,.
Main results
» Fort € [kh, (k 4+ 1)h), we inductively define X7 by
XY o= X3, + (¢ — kR)b(kh, Xin, prn(Xin)) + V2(We — Wia),

where pl, (z) is the distributional density of X7,.

» Allinall, X} solved the following Euler scheme:

t
XtN:Xo-‘r/ bN(qﬁN(S),XéVN(S))dS-‘r\/EWt,
0

where ¢n (s) := jh for s € [jh, (j + 1)h) and

bN(t7 ZC) = 1t>hb(t7 z, pgN(s)(x))




Main results

Theorem 2

Assume that b is bounded measurable and

lim lim sup |b(¢,z,u) — b(to, z,u0)] =0, VR >DO0. (1.5)

t—tp u—ug lz|<R

(Existence) For any T > 0 and initial data j10 € P(R?), there are a
subsequence Ny, and a weak solution X, to DDSDE (1.3), so that for any
bounded measurable f and t € (0,T),

lim Ef(XV%) = Ef(Xy). (1.6)

k—oo

Moreover, X admits a density p: with

k—oo

lim I (z) — pe(z)]dz = 0. (1.7)
R4
(Uniqueness) Assume that pio(dx) = po(z)dz with po € L* N L? for some
q € (d, ], and there is a constant C' such that for all t, z,u1, us,
|b(t, z,u1) — b(t,z,uz)| < Clur — uz. (1.8)

Then weak and strong uniqueness hold for DDSDE (1.3).
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Main results
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» We emphasize that the continuity of b in the time variable is no neces-
sary for the existence of weak solution. Here we need it because we are
considering the Euler scheme.

» If the uniqueness holds, then limit (1.6) and (1.7) hold for the whole Main results
sequence.

» By the well-known results about heat kernel estimate, there are constants
C > 0and A > 1 such that for all (¢, z) € Ry x R?,

lo—y|?
pi() < Ct’m/ e 3 po(dy).
R4
» Rewrite
b(t, 2, 1) = blt, @, plx)),
where p(z) := $%(z). Notice that we can’t compare the condition

b(t, ,-) is continuous in P(R?) and the condition b(t,z,-) is contin-
uous in R.
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Corollary 3

Let jio € P(R?). Main results

(i) Assume b is bounded and measurable such that (1.5) holds. Then there
is a weak solution p; to NFPE (1.4) in the distribution dense with

Jra pe(x)da =1 and Cylindrical

«a-stable

_lz—yl?

0 < pe(2) <Ct’d/2/ e X po(dy).

Rd

(ii) Assume that (1.8) holds and that po(dz) = po(z)dz with po € (L' N
LY)(R?) for some q € (d,o0]. Then the solution in assertion (i) is
unique.
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t
XN = X +/ WY (o (s), X3 (s))ds + V2, (1.9)
0

where ¢ (s) := jh for s € [jh, (j + 1)h) and

N N
b7 (t, ) = Liznb(t, z, p¢>N(S)(x))' Sketch of the

proof

» Firstly, we have
E| XY — XN |?? < Cplt — s,

for some unimportant C;, which is independent with N. By Kolmogorov’s
criterion, Prokhorov’s theorem and Skorokhod’s representation theorem,
the law of X ?V is tight and there is a new probability space with (X, W)
and (X, W) thereon which has the same distribution as (X, W)
such that

(XNe WNEY 5 (X, W), a.s.

for some subsequence Nj. For simplicity, we denote Ni by N.

» It is easy to see that I/VN~ and W are BMs and X? satisfies the Euler
scheme (1.9) with W = W,
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» On the other hand, we shall obtain some properties of p" . DDSDE
» When X, = z, we denote by X7V () := X}V. Let
1 _lal?
g(t,z) == W@ I
Sketch of the
Lemma 4 (Duhamel’s formula) proof

For each t € (0,T] and x € RY, XN () admits a density pY (t,y) which
satisfies the following equality:

t
Py (t,y) :g(t,xfy)Jr/o E{bN(¢N(S)7XéVN<s>)Vg(tfsynyiv) ds.

Cylindrical

«a-stable

Moreover, piv(y) = fRd P:Icv(t: y)po(dz).

Theorem 5 (Lemaire-Menozzi(2010), EJP)
For any T > 0, there is a constant C = C(d, ||b]|oo, T) such that for all
N €N, t e (0,T)and z,y € RY,

pY (t,y) < Cg(dt,z —y).
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> By these two results, it is easy to see that p” is uniformly bounded and
Holder in [1/M, T] x R for any M > 1. Therefore, by Ascolli-Arzela’s
theorem, there is a function p; () and subsequence { Ny, } with

lim sup sup |p " (x) — pe(x)| =0, ¥M >0. (1.10)
oo te (/M T] ol <M Sketch of the
proof

Moreover, p; is the density of X;. For simplicity, denote N by Ny.

> XY =Ko+ [ b(dn(9): X3 () P () (Kb (9))ds + V2N

{ { 1(1.5) & (1.10) 1

| 2 Xt :XO + f]: b(S,XéVN<S),p5(XéVN(S>))dS + \/QWt
i}

J mollify b & Krylov’s estimate |

X Xo + [y b(s, Xs,ps(Xs))ds + V2W.

v
s
I




Uniqueness

>

| 2

It is well-known that the following SDE is well-posed when B is bounded
measurable (see [1])

dX, = B(t, X;)dt + dW.

Weak uniqueness of DDSDE(1.3)=>Strong uniqueness of DDSDE(1.3).

For any two solution X} and X? of DDSDE(1.3) with the same initial,
we only need to prove they have the same density. Denote by pi(x) the
density of X/ fori = 1,2.

pi(z) and p;(z) are also two solutions of NFPE (1.4). Noting that b
is Lipschitz, we shall use Gronwall’s 1nequality to get the uniqueness.
However, we have to deal with jo llpt]] Lm(Rd)dt. If we only use the
Duhamel’s formula in last page, it will blow up.

By the heat kernel estimate, we have

1ot ()lloe < Ct_w”/ e X po(y)dy| Lo
<t YD po]| o

~

Therefore, if ¢ > d, we obtain the uniqueness.

[1] Veretennikov, A., On the strong solutions of stochastic differential equations. Theory Probab.
Appl., 24 (1979), 354-366.
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Part 2 :
Rate of convergence of Euler
approximation for SDEs driven by Cylindrical
cylindrical a-stable processes.

Based on the joint work with Mingyan Wu.

a-stable
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» Itis a well-known that every Lévy process L; has a Lévy symbol ¥, i.e.
Ee?lt = () vz e RY

> Let o € (0,2), a R%valued Lévy process L; is called a d-dimensional
a-stable process if the Lévy symbol W has the following representation:

U(z) = /Rd[eim — 1 —izal)y <1 ]v(de),

. Introduction
where v is called Lévy measure of L; and

V(A) = /S(H fu(dw) /000 1A(m)%, VA € B(RY),

S*71 .= {2 € R% |z| = 1} and s a finite measure on (S4~1, B(S*™1)).




Two works about Euler

a-stable process approximation for SDEs

Zimo Hao

» In the sequel, all i is non-degenerate, i.e.
inf |& - w[*u(dw) > 0.
@wesd—1 Jgd—1
» For simplicity, we assume that p is symmetric, i.e. u(A) = p(—A).
» The infinitesimal generator .£“ of a-stable process Ly is
2 f(a) =pav. [ (Fo+9) -~ F@)idy)
R
where p.v. is Cauchy principle value. It is a nonlinear operator. Introduction
Example 6
» When p is the Lesbegue measure on S, v(dy) = 1/|y|*"*dy and
¥(z) = —C|z|* with some absolute constant C' > 0.
» This time, we call L; a standard d-dim «-stable process.

» Denote by A/? the infinitesimal generator of L;.
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> Let {L§ 4, bei.i.d. 1-dim standard a-stable processes. DDSDE

> Asyouknow, (B}, ..., BY) isad-dim BM when { B} }¢_, arei.i.d. 1-dim
BMs. Is (L¢, ..., L) a d-dim standard a-stable process?

» The answer is NO!

Example 7

> Let L; := (L3, ..., Lf). Then p = 25:1 de, Where 9 is the Dirac measure Cvlindrical
and e; = (0, .., Lin, .., 0), ’

«a-stable

Introduction

- d
v(dz) =Y do(da) -+ 6o(dxk,1)|xk|%50(dxk+1) - 6o(dza).
k=1

» This time, we call L; a cylindrical d-dim a-stable process.

» Notice that the Lévy measure of cylindrical -stable process is even not
absolute to Lesbegue measure.

» Cylindrical a-stable process is much more singular then the standard one.
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» Consider the following SDEs:
dXt = b(Xt)dt + U(Xt)st,

where b : R* — R%, o : R* — R? ® R% and L, is a a-stable process
and following parabolic equation

Ou=LSu+b-Vu+ f,

where

£2f(z) == . / (F(@+ o(@)y) — F(2)v(dy).

R Introduction

» Let f = 0and X7 be the solution SDE with X§ = z. By It6’s formula,
u(- — s, X7) is a martingale and

Euo(X{) = Eu(t, X§) = u(t, ).
» In the sequel, we assume that it is elliptical, i.e.

inf det o(z) > 0.




SDE:s driven by cylindrical o-stable process
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» Also consider the Euler scheme:
dXtN = b(X¢N (t))dt —+ U(X¢N (t))st-

» When o and b are Lipschitz, it is easy to obtain the well-posed result and
rate of convergence of Euler approximation for it. what if b is only in
some Holder space?

» It is well-known that ODE X; = [ Ot b(X,)ds may be ill-posed when b Introduction
is only Holder continuous.

» To answer this question, I will introduce Schauder’s estimate and Zvonkin’s
transform.
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» Let a; ; and b, be measurable functions from R? to R, where i, j, k €
{1,2,...,d}. Define vector-valued function b = (b1, b, ..., bg), and con-
sider the following elliptic equation:

d

Z ai j0:0;u+b-Vu=f, @.1)
i,j=1
where b - Vu := Zj:1 b;O;u. Suppose that the source term f €
CP(R%).
» Assume a;,; are elliptic,

d
Z &iai & > /\\f\z, Ve € RY, Introduction

3,j=1
and the relevant norms of coefficients are all bounded by another constant

A>0,ie.,
d d
> laigllcsme + Y lIbllce ey < A
=1

Q=1
» Schauder’s estimate: there is a positive constant ¢ = ¢(d, 8, A, A) such
that for all solution u € C*T#(R?) of (2.1),

lull 246 ray < c(llullpoo may + |fllcs ®ay)-
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» For simplification, we consider the following SDE:
dX; = b(X¢)dt + dWr, (2.2)
where b : R? — R? is Holder and W, is a standard BM.
» We consider the following backward PDE:
ou+Au+b-Vu+b= 2, uT)=0.
By Schauder’s estimate,

Introduction

ullLsecare < Cr(N)[blles Cr(A) =0 (A —=00),  (23)

where L C*H# .= L°°([0, T]; C**#(RY)).
» Then, ®;(z) := u(t, z) + z is a diffeomorphism on R? for some large A
and Y; := ®4(X:) satisfies the following SDE

dY; = Vu(t, ®; ' (Y2)dW; + dW; + Au(t, ®; ' (V2))dt.
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» We consider the following Euler scheme:
AXY = b(Xyy 1y)dt + AWy,

and let A = 0.
» By It6’s formula, we have

O(Xe) — Bu(X7) = @ (X)—‘PS(XN)

Introduction

» Noting that
EIX{ - XJ\lF <CNTP2,

and u, Vu are Lipschitze, by some Gronwall-type inequality, we obtain
the rate of

E| X7 — X, 7.

» A natural question is whether Schauder’s estimates hold when we replace
the local operator a;;0;0; by some non-local ones?
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» Actually, there are many known results.

% For the following parabolic equation:
ou=2L u+b-Vu+ f, wug=0.

2012 (Silverstre, Indi- ana Univ. Math. J., 61(2012))
> ac(0,2),22=A?andbe C° witha+ 8> 1.

||U‘|qusaca+ﬁ < CTHfHL;OcB~

2019 (Chaudru, Menozzi and Priola, J. Funct. Anal. 128 (2020))
> a€(1/2,1),0 =Tand b € C? witha + 8 > 1.

% For the following elliptic equation:
Known results

LIu+b-Vu=f.
2010 (Priola, Osaka J. Math., 49 (2012))
> ac(1,2),-9(z) >cz|*, o =Tandb e CP witha + 8 > 1.
2019 (Ling and Zhao, arXiv:1907.00588)
> ac (0,1), v(dy) = 1/|y|* *dy and 0, b € C® with o + 5 > 1.
2019 (Kiihn, Integral Equations Operator Theory 91(2019))




dXt = b(Xt)dt + O'(Xt_)st7

» Based on the Schauder’s estimate for the non-local equation, there are
some works about the Euler scheme.
2017 (Mikulevicius and Xu)
> Assume o € [1,2), v(dy) = p(y)/|y|*T™ with ¢ < p(y) < 7%,
Yy € R%, p(A\y) = p(y), o is bounded Lipschitz and b, p € C? with
B >1— a/2. Forany p € (0, a), they have

E| sup | X — X,|P?| < CN7PP/=,

0<t<1
» Notice that they can not deal with the cylindrical case and o > 1. Con-
dition 8 > 1 — «/2 is to guarantee the well-posed for the SDE.
2017 (Huang and Liao, Stochastic Analysis and Applications, 36(2018))
> Assume a € [1,2), —¥(z) > c|z|* and b,p € C? with 8 € (1 —
a/2,1). Forany p € (0, /), they have
E| sup | XY — X,|?| < CN PP/,

0<t<1

» Notice that they also can not deal with the case oo < 1.
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» In fact, « < 1 is the supercritical case. When o < 1, the transport item,
which has no regularity, dominates the diffusion items .Z;*:

ou=2L u+b-Vu+ f, wug=0. (2.4)

» There is no results about the Schauder’s estimate for it when b € C?, L,
is cylindrical and o # L.

Theorem 8 (Schauder’s estimates)

Suppose that o € (1/2,1), p is non-degenerate, o is elliptical, o € C” with
v € (0,1, be CPwith B € (1 — a,ay), and o + ¢ N. For any T > 0,
there is a constant ¢ > 0 and a unique classical solution u of PDE (2.4)
satisfying,

||u||L§9(ca+ff(Rd)) < CHfH]L;?(cﬁ(Rd))-

» Condition @ > 1/2 comes from the condition 3 € (1 — «, ary) which O esilhs
means

l—a<a=a>1/2
» We used a method based on Littlewood-Paley operators to prove it which
can be find in [1] and [2].

[1] Hao, Z., Wu, M. and Zhang, X., Schauder estimates for nonlocal kinetic equations and
applications. J. Math. Pures Appl. 140 (2020) 139-184.

[2] Hao, Z., Wang, Z. and Wu, M., Schauder’s estimates for nonlocal equations with singular
Lévy measures. Available at arXiv:2002.09887.
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Corollary 9

Assume o € (1/2,1), w is non-degenerate, o is elliptical, o is Lipschitz and
be CPwithB € (1—a/2,1). Foranyp € (0,a) and T > 0, there is a
constant C' such that for all N € N

IE[ sup X} — Xt|p] < CN7PP,
te[0,T]

Our results
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Thanks for your attention!

Our results
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