Two works about Euler approximation for SDEs

Zimo Hao¹

Based on the joint works with Michael Röckner²³, Mingyan Wu¹ and Xicheng Zhang¹

¹Wuhan University ²Universität Bielefeld ³Academy of Mathematics and System Sciences

CRC-2020

August 17, 2020

approximation for SDEs Zimo Hao DDSDE Cylindrical

Two works about Fuler

Outline

- Euler approximation for DDSDEs of Neymytskii-type
 - Introduction
 - Main results
 - Sketch of the proof

Rate of convergence of Euler approximation for SDEs driven by cylindrical α-stable processes.

- Introduction
- Main results

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Cylindrical

Part 1 : Euler approximation for DDSDEs of Neymytskii-type

Based on the joint work^[1] with Michael Röckner and Xicheng Zhang

[1] Hao, Z., Röckner, M. and Zhang, X., Euler scheme for density dependent stochastic differential equations. arXiv:2007.15426.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Sketch of the Cylindrical

▲□▶▲□▶▲□▶▲□▶ = のへで

DDSDE

- ▶ Let $(\Omega, \mathscr{F}, \mathbb{P}; (\mathscr{F}_t)_{t \ge 0})$ be a complete filtration probability space.
- ▶ Let $(W_t)_{t \ge 0}$ be a *d*-dimensional standard \mathscr{F}_t -Brownian motion.
- ▶ Denote by P(ℝ^d) the space of all probability measures over (ℝ^d, B(ℝ^d)), which is endowed with the weak convergence topology.
- ▶ Let $b : \mathbb{R}_+ \times \mathbb{R}^d \times \mathcal{P} \to \mathbb{R}^d$ and $\sigma : \mathbb{R}_+ \times \mathbb{R}^d \times \mathcal{P} \to \mathbb{R}^d \otimes \mathbb{R}^d$ be two measurable functions.
- Consider the following distribution dependent stochastic differential equation (abbreviated as DDSDE):

 $dX_t = b(t, X_t, \mu_t)dt + \sigma(t, X_t, \mu_t)dW_t, \quad X_0 \stackrel{(d)}{=} \mu_0,$ (1.1)

where $\mu_t = \mathbb{P} \circ X_t^{-1}$.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Introduction Cylindrical

DDSDE and NFPE

▶ By Itô's formula, under some general conditions on the coefficients, for any $\varphi \in \mathbf{C}_b^{\infty}(\mathbb{R}^d)$, μ_t satisfies the following nonlinear Fokker-Planck equation (abbreviated as NFPE):

$$\int_{\mathbb{R}^d} \varphi(x)\mu_t(\mathrm{d}x) = \int_{\mathbb{R}^d} \varphi(x)\mu_0(\mathrm{d}x) + \int_0^t \int_{\mathbb{R}^d} (L_{\mu_s}\varphi)(s,x)\mu_s(\mathrm{d}x)\mathrm{d}s,$$
(1.2)

where for $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$ and $a_{ij} := \sum_{k=1}^d \sigma_{ik} \sigma_{jk}$,

$$(L_{\mu_t}\varphi)(t,x) := \frac{1}{2} \sum_{i,j=1}^d a_{i,j}(t,x,\mu_t) \partial_i \partial_j \varphi(x) + \sum_{i=1}^d b_i(t,x,\mu_t) \partial_i \varphi(x).$$

・ロト・西ト・モト・モト ヨー

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Introduction Cylindrical

DDSDE and NFPE

• Existence of DDSDE \Rightarrow Existence of NFPE;

Assume that

$$\begin{aligned} &(i) \quad \mu_t \in \mathcal{P}(\mathbb{R}^d) \text{ for all } t \in \mathbb{R}_+. \\ &(ii) \quad \forall i, j = 1, .., d, \\ &\int_0^T \int_{\mathbb{R}^d} [|a_{ij}(t, x, \mu_t)| + |b_i(t, x, \mu_t)|] \mu_t(\mathrm{d}x) \mathrm{d}t < \infty \quad \forall T > 0. \end{aligned}$$

(*iii*) $t \rightarrow \mu_t$ is weakly continuous.

By the superposition principle (see Section 2 in [1] and Theorem 2.5 in [2]), we have

- Existence of NFPE \Rightarrow Existence of DDSDE;
- ▶ Weak uniqueness of DDSDE \Rightarrow Uniqueness of NFPE.

[1] Barbu, V., Röckner, M., From Fokker-Planck equations to solutions of distribution dependent SDE, to appear in Annals of Probability. https://doi.org/10.1214/19-AOP1410.

[2] Trevisan, D. Well-posedness of multidimensional diffusion processes with weakly differentiable coefficients. Electron. J. Probab. https://doi.org/10.1214/16-EJP4453.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Introduction Main results Sketch of the Cylindrical

Nemytskii-type

▶ In the special case, *a*, *b* only works on measures with density respect to the Lebesgue measure dx and there are \bar{b} : $\mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d$ and $\bar{\sigma} : \mathbb{R}_+ \times \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}^d \otimes \mathbb{R}^d$ such that

 $dX_t = \bar{b}(t, X_t, \rho_t(X_t))dt + \bar{\sigma}(t, X_t, \rho_t(X_t))dW_t, \quad X_0 \stackrel{(d)}{=} \mu_0,$

where $\rho_t(x) := \frac{d\mu_t}{dx}(x)$, which is called the Nemytskii-type.

This time, NFPE can be rewritten (in the sense of Schwartz distributions) as

 $\partial_t \rho_t(x) = \frac{1}{2} \sum_{i,j=1}^d \partial_i \partial_j [\bar{a}_{ij}(t, x, \rho_t(x))\rho_t(x)] - \operatorname{div}[\bar{b}(t, x, \rho_t(x))\rho_t(x)],$ $\lim_{t \downarrow 0} \rho_t = \nu_0 \text{ weakly,}$

where $\bar{a}_{ij} = \sum_{k=1}^{d} \bar{\sigma}_{ik} \bar{\sigma}_{jk}$, which is a quasilinear parabolic equation.

In the sequel, we only consider the DDSDE of Nemytskii-type. For simplicity, denote by σ, a, b the σ̄, ā, b̄.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Introduction Main results Cylindrical

Our model

► For simplicity, we consider an easy DDSDE of Nemytskii-type:

$$dX_t = b(t, X_t, \rho_t(X_t))dt + \sqrt{2}dW_t, \quad X_0 \stackrel{(d)}{=} \mu_0, \quad (1.3)$$

$$\partial_t \rho_t(x) = \Delta \rho_t(x) - \operatorname{div}[b(t, x, \rho_t(x))\rho_t(x)], \quad \lim_{t \downarrow 0} \rho_t = \mu_0 \text{ weakly.}$$
(1.4)

Definition 1

Let $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$. We call a filtered probability space $(\Omega, \mathscr{F}, \mathbb{P}; (\mathscr{F}_t)_{t \ge 0})$ together with a pair of processes (X, W) thereon a weak solution of SDE (1.3) with initial distribution μ_0 , if

$$\mathbb{P} \circ X_0^{-1} = \mu_0 \text{ and } W \text{ is a } d\text{-dimensional } \mathscr{F}_t\text{-BM};$$

$$\text{for each } t > 0, \, \rho_t(x) := \frac{\mathbb{P} \circ X_t^{-1}(\mathrm{d}x)}{\mathrm{d}x}(x) \text{ and}$$

$$X_t = X_0 + \int_0^t b(s, X_s, \rho_s(X_s)) \mathrm{d}s + \sqrt{2}W_t, \quad \mathbb{P} - a.s.$$

Question: In what conditions of b, the existence and uniqueness hold?

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Introduction *Sketch of the* Cylindrical

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のへぐ

Known results

2018 (Barbu and Röckner, Ann. Probab. 48(2020))

Assume that µ₀ has a density with respect to the Lebesgue measure, b(t, x, u) = b(x, u) and one of the followings holds:
 (i) b ∈ C_b(ℝ^d × ℝ) ∩ C¹(ℝ^d × ℝ), b(x, 0) ≡ 0, ∀x ∈ ℝ^d;

(*ii*) $b \in \mathbf{C}_b(\mathbb{R}) \cap \mathbf{C}^1(\mathbb{R}^d), b(0) = 0.$

Then there exists a weak solution to DDSDE (1.3).

2019 (Barbu and Röckner, arXiv:1909.04464)

▶ Assume that μ_0 has a density $\rho_0(x)$ with respect to the Lebesgue measure, $b(t, x, u) = b(x, u), b \in \mathbf{C}_b(\mathbb{R}^d \times \mathbb{R}) \cap \mathbf{C}^1(\mathbb{R}^d \times \mathbb{R}), b(x, 0) \equiv 0$

$$\sup\{|\partial_r b^i(x,r)|; x \in \mathbb{R}^d, i = 1, 2, |r| \leq M\} \leq C_M, \quad \forall M > 0,$$

and, for

$$\delta(r) := \sup |\partial_x b(x, r)|; x \in \mathbb{R}^d,$$

we have $\delta \in \mathbf{C}_b(\mathbb{R})$. For each $\rho_0 \in L^{\infty} \cap L^1$, the NFPE (1.4) has at most one distributional solution $\rho \in L^{\infty}(\mathbb{R}_+; L^1) \cap L^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)$.

Actually, in the papers above, they mainly concentrate on the case $a_{i,j} \neq \delta_{i,j}$ with some assumptions on a. For simplicity, we assume $a_{i,j} = \delta_{i,j}$ and only show the assumption of b.

のすの 聞 ふぼやんぼやん しゃ

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Known results Main results Sketch of the Cylindrical α -stable

Known results

Other results about DDSDE of Nemytskii-type:

- Barbu, V., Röckner, M., Probabilistic representation for solutions to nonlinear Fokker-Planck equations, SIAM J. Math. Anal., 50 (2018), 4246-4260.
- Barbu, V. and Röckner, M., Solutions for nonlinear Fokker-Planck equations with measures as initial data and McKean-Vlasov equations. arXiv:2005.02311.

· ····

► In all the above works, they obtained the results by solving the associated NFPE and then by the superposition principle.

New Question: Is it possible to use a purely probabilistic method to construct a weak solution?

▶ In fact, we shall use Euler's scheme to construct a weak solution.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Known results Main results Sketch of the Cylindrical

Euler scheme

► Let $T > 0, N \in \mathbb{N}$ and h := T/N. For $t \in [0, h)$, define $X_t^N := X_0 + \sqrt{2}W_t.$

For t ∈ [kh, (k + 1)h), we inductively define X^N_t by
 X^N_t := X^N_{kh} + (t − kh)b(kh, X^N_{kh}, ρ^N_{kh}(X^N_{kh})) + √2(W_t − W_{kh}), where ρ^N_{kh}(x) is the distributional density of X^N_{kh}.
 All in all, X^N_t solved the following Euler scheme:

$$X_t^N = X_0 + \int_0^t b^N(\phi_N(s), X_{\phi_N(s)}^N) \mathrm{d}s + \sqrt{2}W_t,$$

where $\phi_N(s) := jh$ for $s \in [jh, (j+1)h)$ and

$$b^{N}(t,x) = 1_{t \ge h} b(t,x,\rho^{N}_{\phi_{N}(s)}(x)).$$

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Cylindrical

Main results

Theorem 2

Assume that b is bounded measurable and

 $\lim_{t \to t_0} \lim_{u \to u_0} \sup_{|x| < R} |b(t, x, u) - b(t_0, x, u_0)| = 0, \quad \forall R > 0.$ (1.5)

(*Existence*) For any T > 0 and initial data $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$, there are a subsequence N_k and a weak solution X_t to DDSDE (1.3), so that for any bounded measurable f and $t \in (0, T]$,

$$\lim_{k \to \infty} \mathbb{E}f(X_t^{N_k}) = \mathbb{E}f(X_t).$$
(1.6)

Moreover, X_t admits a density ρ_t with

$$\lim_{k \to \infty} \int_{\mathbb{R}^d} |\rho_t^{N_k}(x) - \rho_t(x)| \mathrm{d}x = 0.$$
(1.7)

(Uniqueness) Assume that $\mu_0(dx) = \rho_0(x)dx$ with $\rho_0 \in L^1 \cap L^q$ for some $q \in (d, \infty]$, and there is a constant C such that for all t, x, u_1, u_2 ,

$$|b(t, x, u_1) - b(t, x, u_2)| \leq C|u_1 - u_2|.$$
(1.8)

Then weak and strong uniqueness hold for DDSDE (1.3).

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Cylindrical

Remark

- ▶ We emphasize that the continuity of *b* in the time variable is no necessary for the existence of weak solution. Here we need it because we are considering the Euler scheme.
- ▶ If the uniqueness holds, then limit (1.6) and (1.7) hold for the whole sequence.
- ▶ By the well-known results about heat kernel estimate, there are constants C > 0 and $\lambda \ge 1$ such that for all $(t, x) \in \mathbb{R}_+ \times \mathbb{R}^d$,

$$\rho_t(x) \leqslant C t^{-d/2} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{\lambda t}} \mu_0(\mathrm{d}y).$$

Rewrite

$$b(t, x, \mu) = \overline{b}(t, x, \rho(x)),$$

where $\rho(x) := \frac{d\mu}{dx}(x)$. Notice that we can't compare the condition $b(t, x, \cdot)$ is continuous in $\mathcal{P}(\mathbb{R}^d)$ and the condition $\bar{b}(t, x, \cdot)$ is continuous in \mathbb{R} .

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Sketch of the Cylindrical

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Main reults

Corollary 3

Let $\mu_0 \in \mathcal{P}(\mathbb{R}^d)$.

(i) Assume b is bounded and measurable such that (1.5) holds. Then there is a weak solution ρ_t to NFPE (1.4) in the distribution dense with $\int_{\mathbb{R}^d} \rho_t(x) dx = 1$ and

$$0 \leqslant \rho_t(x) \leqslant C t^{-d/2} \int_{\mathbb{R}^d} e^{-\frac{|x-y|^2}{\lambda t}} \mu_0(\mathrm{d} y).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

(ii) Assume that (1.8) holds and that $\mu_0(dx) = \rho_0(x)dx$ with $\rho_0 \in (L^1 \cap L^q)(\mathbb{R}^d)$ for some $q \in (d, \infty]$. Then the solution in assertion (i) is unique.

Two works about Euler approximation for SDEs Zimo Hao DDSDE Main results Sketch of the Cylindrical

Existence

Recall

$$X_t^N = X_0 + \int_0^t b^N(\phi_N(s), X_{\phi_N(s)}^N) \mathrm{d}s + \sqrt{2}W_t, \qquad (1.9)$$

where $\phi_N(s) := jh$ for $s \in [jh, (j+1)h)$ and

$$b^{N}(t,x) = 1_{t \ge h} b(t,x,\rho^{N}_{\phi_{N}(s)}(x)).$$

Firstly, we have

$$\mathbb{E}|X_t^N - X_s^N|^{2p} \leqslant C_p|t - s|^p,$$

for some unimportant C_p which is independent with N. By Kolmogorov's criterion, Prokhorov's theorem and Skorokhod's representation theorem, the law of X^N is tight and there is a new probability space with (\tilde{X}, \tilde{W}) and $(\tilde{X}^N, \tilde{W}^N)$ thereon which has the same distribution as (X^N, W) such that

 $(\tilde{X}^{N_k}, \tilde{W}^{N_k}) \to (\tilde{X}, \tilde{W}), \quad a.s.$

for some subsequence N_k . For simplicity, we denote N_k by N.

► It is easy to see that W^N and W are BMs and X̃^N satisfies the Euler scheme (1.9) with W = W̃^N.

▲□▶▲□▶▲□▶▲□▶ = のへで

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Sketch of the proof Cylindrical

Existence

- On the other hand, we shall obtain some properties of ρ_t^N .
- When $X_0 = x$, we denote by $X_t^N(x) := X_t^N$. Let

$$g(t,x) := \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}}$$

Lemma 4 (Duhamel's formula)

For each $t \in (0,T]$ and $x \in \mathbb{R}^d$, $X_t^N(x)$ admits a density $p_x^N(t,y)$ which satisfies the following equality:

$$p_x^N(t,y) = g(t,x-y) + \int_0^t \mathbb{E}\left[b^N(\phi_N(s), X^N_{\phi_N(s)})\nabla g(t-s,y-X^N_s)\right] \mathrm{d}s$$

Moreover, $\rho_t^N(y) = \int_{\mathbb{R}^d} p_x^N(t,y)\mu_0(\mathrm{d}x).$

Theorem 5 (Lemaire-Menozzi(2010), EJP)

For any T > 0, there is a constant $C = C(d, ||b||_{\infty}, T)$ such that for all $N \in \mathbb{N}$, $t \in (0, T]$ and $x, y \in \mathbb{R}^d$,

$$p_x^N(t,y) \leqslant Cg(4t,x-y).$$

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Sketch of the proof Cylindrical

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Existence

▶ By these two results, it is easy to see that ρ^N is uniformly bounded and Hölder in $[1/M, T] \times \mathbb{R}^d$ for any M > 1. Therefore, by Ascolli-Arzela's theorem, there is a function $\rho_t(x)$ and subsequence $\{N_k\}_k$ with

$$\lim_{k \to \infty} \sup_{t \in [1/M,T]} \sup_{|x| \le M} |\rho_t^{N_k}(x) - \rho_t(x)| = 0, \quad \forall M > 0.$$
(1.10)

Moreover, ρ_t is the density of \tilde{X}_t . For simplicity, denote N by N_k .

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Sketch of the proof Cylindrical

・ロト・国ト・モート ヨー うへの

Uniqueness

▶ It is well-known that the following SDE is well-posed when *B* is bounded measurable (see [1])

 $\mathrm{d}X_t = B(t, X_t)\mathrm{d}t + \mathrm{d}W_t.$

- ► Weak uniqueness of DDSDE(1.3)⇒Strong uniqueness of DDSDE(1.3).
- ► For any two solution X_t^1 and X_t^2 of DDSDE(1.3) with the same initial, we only need to prove they have the same density. Denote by $\rho_t^i(x)$ the density of X_t^i for i = 1, 2.
- ▶ $\rho_t^1(x)$ and $\rho_t^1(x)$ are also two solutions of NFPE (1.4). Noting that *b* is Lipschitz, we shall use Gronwall's inequality to get the uniqueness. However, we have to deal with $\int_0^T \|\rho_t^1\|_{L^\infty(\mathbb{R}^d)}^2 dt$. If we only use the Duhamel's formula in last page, it will blow up.
- ▶ By the heat kernel estimate, we have

$$\begin{aligned} \|\rho_t^1(\cdot)\|_{L^{\infty}} &\leqslant Ct^{-d/2} \|\int_{\mathbb{R}^d} e^{-\frac{\cdot-y}{\lambda t}} \rho_0(y) \mathrm{d}y\|_{L^{\infty}} \\ &\lesssim t^{-d/(2q)} \|\rho_0\|_{L^q}. \end{aligned}$$

▶ Therefore, if q > d, we obtain the uniqueness.

[1] Veretennikov, A., On the strong solutions of stochastic differential equations. Theory Probab. Appl., 24 (1979), 354-366. Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Sketch of the proof Cylindrical

Part 2 : Rate of convergence of Euler approximation for SDEs driven by cylindrical α-stable processes.

Based on the joint work with Mingyan Wu.

A ロ ト 4 目 ト 4 目 ト 4 目 ・ 9 Q Q

Zimo Hao DDSDE Sketch of the Cylindrical α -stable

Two works about Euler approximation for SDEs

α -stable process

▶ It is a well-known that every Lévy process L_t has a Lévy symbol Ψ , i.e.

 $\mathbb{E}e^{izL_t} = e^{t\Psi(z)}, \quad \forall z \in \mathbb{R}^d.$

► Let $\alpha \in (0, 2)$, a \mathbb{R}^d -valued Lévy process L_t is called a *d*-dimensional α -stable process if the Lévy symbol Ψ has the following representation:

$$\Psi(z) = \int_{\mathbb{R}^d} [e^{izx} - 1 - izx\mathbf{1}_{|x|<1}]\nu(\mathrm{d}x),$$

where ν is called Lévy measure of L_t and

$$\nu(A) := \int_{\mathbb{S}^{d-1}} \mu(\mathrm{d}\omega) \int_0^\infty \mathbf{1}_A(r\omega) \frac{\mathrm{d}r}{r^{1+\alpha}}, \quad \forall A \in \mathcal{B}(\mathbb{R}^d),$$

 $\mathbb{S}^{d-1} := \{x \in \mathbb{R}^d; |x| = 1\} \text{ and } \mu \text{ is a finite measure on } (\mathbb{S}^{d-1}, \mathcal{B}(\mathbb{S}^{d-1})).$

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Sketch of the Cylindrical Introduction

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

α -stable process

• In the sequel, all μ is non-degenerate, i.e.

$$\inf_{\tilde{\omega}\in\mathbb{S}^{d-1}}\int_{S^{d-1}}|\tilde{\omega}\cdot\omega|^2\mu(\mathrm{d}\omega)>0$$

For simplicity, we assume that μ is symmetric, i.e. $\mu(A) = \mu(-A)$.

• The infinitesimal generator \mathscr{L}^{α} of α -stable process L_t is

$$\mathscr{L}^{\alpha}f(x) := \text{p.v.} \int_{\mathbb{R}^d} (f(x+y) - f(x))\nu(\mathrm{d} y),$$

where p.v. is Cauchy principle value. It is a nonlinear operator.

Example 6

- ▶ When μ is the Lesbegue measure on \mathbb{S}^{d-1} , $\nu(\mathrm{d}y) = 1/|y|^{d+\alpha}\mathrm{d}y$ and $\Psi(z) = -C|z|^{\alpha}$ with some absolute constant C > 0.
- This time, we call L_t a standard d-dim α -stable process.
- Denote by $\Delta^{\alpha/2}$ the infinitesimal generator of L_t .

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Cylindrical Introduction

Cylindrical α -stable process

- Let $\{L_t^i\}_{i=1}^d$ be i.i.d. 1-dim standard α -stable processes.
- As you know, $(B_t^1, ..., B_t^d)$ is a *d*-dim BM when $\{B_t^i\}_{i=1}^d$ are i.i.d. 1-dim BMs. Is $(L_t^1, ..., L_t^d)$ a *d*-dim standard α -stable process?
- ► The answer is NO!

Example 7

• Let $L_t := (L_t^1, ..., L_t^d)$. Then $\mu = \sum_{i=1}^d \delta_{e_i}$ where δ is the Dirac measure and $e_i = (0, ..., 1_{ith}, ..., 0)$,

$$\nu(\mathrm{d}x) = \sum_{k=1}^n \delta_0(\mathrm{d}x_1) \cdots \delta_0(\mathrm{d}x_{k-1}) \frac{\mathrm{d}x_k}{|x_k|^{1+\alpha}} \delta_0(\mathrm{d}x_{k+1}) \cdots \delta_0(\mathrm{d}x_d).$$

• This time, we call L_t a **cylindrical** d-dim α -stable process.

- Notice that the Lévy measure of cylindrical α-stable process is even not absolute to Lesbegue measure.
- Cylindrical α -stable process is much more singular then the standard one.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Sketch of the Cylindrical Introduction

SDEs driven by α -stable process

Consider the following SDEs:

 $\mathrm{d}X_t = b(X_t)\mathrm{d}t + \sigma(X_t)\mathrm{d}L_t,$

where $b : \mathbb{R}^d \to \mathbb{R}^d$, $\sigma : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and L_t is a α -stable process and following parabolic equation

$$\partial_t u = \mathscr{L}^{\alpha}_{\sigma} u + b \cdot \nabla u + f,$$

where

$$\mathscr{L}^{\alpha}_{\sigma}f(x) := \text{p.v.} \int_{\mathbb{R}^d} (f(x + \sigma(x)y) - f(x))\nu(\mathrm{d}y).$$

▶ Let $f \equiv 0$ and X_t^x be the solution SDE with $X_0^x = x$. By Itô's formula, $u(\cdot - s, X_t^x)$ is a martingale and

 $\mathbb{E}u_0(X_t^x) = \mathbb{E}u(t, X_0^x) = u(t, x).$

In the sequel, we assume that it is elliptical, i.e.

$$\inf_{x} \det \sigma(x) > 0.$$

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Cylindrical Introduction

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ ̄豆 _ のへの

SDEs driven by cylindrical α -stable process

Also consider the Euler scheme:

$$\mathrm{d}X_t^N = b(X_{\phi_N(t)})\mathrm{d}t + \sigma(X_{\phi_N(t)})\mathrm{d}L_t.$$

- When σ and *b* are Lipschitz, it is easy to obtain the well-posed result and rate of convergence of Euler approximation for it. what if *b* is only in some Hölder space?
- ▶ It is well-known that ODE $X_t = \int_0^t b(X_s) ds$ may be ill-posed when b is only Hölder continuous.
- To answer this question, I will introduce Schauder's estimate and Zvonkin's transform.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Introduction Known results Main results Sketch of the

Cylindrical α-stable Introduction Known results Our results

Schauder's estimate

▶ Let $a_{i,j}$ and b_k be measurable functions from \mathbb{R}^d to \mathbb{R} , where $i, j, k \in \{1, 2, ..., d\}$. Define vector-valued function $b = (b_1, b_2, ..., b_d)$, and consider the following elliptic equation:

$$\sum_{i,j=1}^{a} a_{i,j} \partial_i \partial_j u + b \cdot \nabla u = f, \qquad (2.1)$$

where $b \cdot \nabla u := \sum_{i=1}^{d} b_i \partial_i u$. Suppose that the source term $f \in \mathbf{C}^{\beta}(\mathbb{R}^d)$.

• Assume $a_{i,j}$ are elliptic,

$$\sum_{i,j=1}^{d} \xi_j a_{i,j} \xi_j \ge \lambda |\xi|^2, \quad \forall \xi \in \mathbb{R}^d,$$

and the relevant norms of coefficients are all bounded by another constant $\Lambda > 0$, i.e.,

$$\sum_{i,j=1}^d \|a_{i,j}\|_{\mathbf{C}^\beta(\mathbb{R}^d)} + \sum_{i=1}^d \|b\|_{\mathbf{C}^\beta(\mathbb{R}^d)} \leqslant \Lambda.$$

► Schauder's estimate: there is a positive constant $c = c(d, \beta, \lambda, \Lambda)$ such that for all solution $u \in \mathbf{C}^{2+\beta}(\mathbb{R}^d)$ of (2.1), $\|u\|_{\mathbf{C}^{2+\beta}(\mathbb{R}^d)} \leq c(\|u\|_{L^{\infty}(\mathbb{R}^d)} + \|f\|_{\mathbf{C}^{\beta}(\mathbb{R}^d)}).$ Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Sketch of the Cylindrical Introduction

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Zvonkin's transform

► For simplification, we consider the following SDE:

 $\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t,\tag{2.2}$

where $b : \mathbb{R}^d \to \mathbb{R}^d$ is Hölder and W_t is a standard BM.

▶ We consider the following backward PDE:

$$\partial_t u + \Delta u + b \cdot \nabla u + b = \lambda u, \quad u(T) = 0.$$

By Schauder's estimate,

$$\|u\|_{\mathbb{L}^{\infty}_{T}\mathbf{C}^{2+\beta}} \leqslant C_{T}(\lambda)\|b\|_{\mathbf{C}^{\beta}} \quad C_{T}(\lambda) \to 0 \quad (\lambda \to \infty), \qquad (2.3)$$

where $\mathbb{L}^{\infty}_{T} \mathbf{C}^{2+\beta} := L^{\infty}([0,T]; \mathbf{C}^{2+\beta}(\mathbb{R}^{d})).$

Then, Φ_t(x) := u(t, x) + x is a diffeomorphism on ℝ^d for some large λ and Y_t := Φ_t(X_t) satisfies the following SDE

$$dY_t = \nabla u(t, \Phi_t^{-1}(Y_t)) dW_t + dW_t + \lambda u(t, \Phi_t^{-1}(Y_t)) dt.$$

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Cylindrical Introduction

Zvonkin's transform

▶ We consider the following Euler scheme:

$$\mathrm{d}X_t^N = b(X_{\phi_N(t)})\mathrm{d}t + \mathrm{d}W_t,$$

and let $\lambda = 0$.

By Itô's formula, we have

$$\begin{split} \Phi_t(X_t) - \Phi_t(X_t^N) &= \Phi_s(X_s) - \Phi_s(X_s^N) \\ &- \int_s^t [u(r, X_r) - u(r, X_r^N)] \mathrm{d}W_r \\ &+ \int_s^t [b(X_{\phi_N(r)}^N) - b(X_r^N)] [\mathbb{I} - \nabla u(r, X_r^N)] \mathrm{d}r. \end{split}$$

Noting that

4

$$\mathbb{E}|X_t^N - X_{\phi_N(t)}^N|^p \leqslant C N^{-p/2},$$

and u, ∇u are Lipschitze, by some Gronwall-type inequality, we obtain the rate of

$$\mathbb{E}|X_t^N - X_t|^p.$$

► A natural question is whether Schauder's estimates hold when we replace the local operator $a_{ij}\partial_i\partial_j$ by some non-local ones? Two works about Euler approximation for SDEs

Zimo Hao DDSDE Cylindrical Introduction

Well-known results

- Actually, there are many known results.
- \star For the following parabolic equation:

$$\partial_t u = \mathscr{L}^{\alpha}_{\sigma} u + b \cdot \nabla u + f, \quad u_0 = 0.$$

2012 (Silverstre, Indi- ana Univ. Math. J., 61(2012))

$$\blacktriangleright \ \alpha \in (0,2), \, \mathscr{L}^{\alpha}_{\sigma} = \Delta^{\alpha/2} \text{ and } b \in \mathbf{C}^{\beta} \text{ with } \alpha + \beta > 1.$$

$$\|u\|_{\mathbb{L}^{\infty}_{T}\mathbf{C}^{\alpha+\beta}} \leqslant C_{T}\|f\|_{\mathbb{L}^{\infty}_{T}\mathbf{C}^{\beta}}$$

2019 (Chaudru, Menozzi and Priola, J. Funct. Anal. 128 (2020))

- $\alpha \in (1/2, 1), \sigma \equiv \mathbb{I} \text{ and } b \in \mathbf{C}^{\beta} \text{ with } \alpha + \beta > 1.$
- ★ For the following elliptic equation:

$$\mathscr{L}^{\alpha}_{\sigma}u + b \cdot \nabla u = f$$

2010 (Priola, Osaka J. Math., 49 (2012))

 $\bullet \ \alpha \in (1,2), -\Psi(z) \ge c|z|^{\alpha}, \sigma \equiv \mathbb{I} \text{ and } b \in \mathbf{C}^{\beta} \text{ with } \alpha + \beta > 1.$

2019 (Ling and Zhao, arXiv:1907.00588)

$$\blacktriangleright \ \alpha \in (0,1), \nu(\mathrm{d} y) = 1/|y|^{d+\alpha} \mathrm{d} y \text{ and } \sigma, b \in \mathbf{C}^{\beta} \text{ with } \alpha + \beta > 1.$$

2019 (Kühn, Integral Equations Operator Theory 91(2019))

.....

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Cylindrical α -stable Known results

$$dX_t = b(X_t)dt + \sigma(X_{t-})dL_t,$$

$$dX_t^N = b(X_{\phi_N(t)}^N)dt + \sigma(X_{\phi_N(t)}^N)dL_t$$

- Based on the Schauder's estimate for the non-local equation, there are some works about the Euler scheme.
- 2017 (Mikulevičius and Xu)

► Assume $\alpha \in [1,2)$, $\nu(dy) = \rho(y)/|y|^{d+\alpha}$ with $c \leq \rho(y) \leq c^{-1}$, $\forall y \in \mathbb{R}^d$, $\rho(\lambda y) = \rho(y)$, σ is bounded Lipschitz and $b, \rho \in \mathbf{C}^{\beta}$ with $\beta > 1 - \alpha/2$. For any $p \in (0, \alpha)$, they have

$$\mathbb{E}\bigg[\sup_{0\leqslant t\leqslant 1}|X_t^N-X_t|^p\bigg]\leqslant CN^{-p\beta/\alpha}.$$

- Notice that they can not deal with the cylindrical case and α > 1. Condition β > 1 − α/2 is to guarantee the well-posed for the SDE.
- 2017 (Huang and Liao, Stochastic Analysis and Applications, 36(2018))
 - Assume $\alpha \in [1,2), -\Psi(z) \ge c|z|^{\alpha}$ and $b, \rho \in \mathbf{C}^{\beta}$ with $\beta \in (1 \alpha/2, 1)$. For any $p \in (0, \alpha/\beta)$, they have

$$\mathbb{E}\bigg[\sup_{0\leqslant t\leqslant 1}|X_t^N-X_t|^p\bigg]\leqslant CN^{-p\beta/\alpha}$$

▶ Notice that they also can not deal with the case $\alpha < 1$.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Sketch of the Cylindrical α -stable Known results

Our results

In fact, α < 1 is the supercritical case. When α < 1, the transport item, which has no regularity, dominates the diffusion items L^α_σ:

$$\partial_t u = \mathscr{L}^{\alpha}_{\sigma} u + b \cdot \nabla u + f, \quad u_0 = 0.$$
(2.4)

► There is no results about the Schauder's estimate for it when $b \in \mathbf{C}^{\beta}$, L_t is cylindrical and $\sigma \neq \mathbb{I}$.

Theorem 8 (Schauder's estimates)

Suppose that $\alpha \in (1/2, 1)$, μ is non-degenerate, σ is elliptical, $\sigma \in \mathbf{C}^{\gamma}$ with $\gamma \in (0, 1]$, $b \in \mathbf{C}^{\beta}$ with $\beta \in (1 - \alpha, \alpha\gamma)$, and $\alpha + \beta \notin \mathbb{N}$. For any T > 0, there is a constant c > 0 and a unique classical solution u of PDE (2.4) satisfying,

$$\|u\|_{\mathbb{L}^{\infty}_{T}(\mathbf{C}^{\alpha+\beta}(\mathbb{R}^{d}))} \leqslant c\|f\|_{\mathbb{L}^{\infty}_{T}(\mathbf{C}^{\beta}(\mathbb{R}^{d}))}.$$

► Condition $\alpha > 1/2$ comes from the condition $\beta \in (1 - \alpha, \alpha \gamma)$ which means

 $1 - \alpha < \alpha \Rightarrow \alpha > 1/2.$

We used a method based on Littlewood-Paley operators to prove it which can be find in [1] and [2].

[1] Hao, Z., Wu, M. and Zhang, X., Schauder estimates for nonlocal kinetic equations and applications. J. Math. Pures Appl. 140 (2020) 139-184.

[2] Hao, Z., Wang, Z. and Wu, M., Schauder's estimates for nonlocal equations with singular Lévy measures. Available at arXiv:2002.09887.

Two works about Euler approximation for SDEs

Zimo Hao DDSDE Main results Sketch of the Cylindrical Our results

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへ⊙

Our results

Corollary 9

Assume $\alpha \in (1/2, 1)$, μ is non-degenerate, σ is elliptical, σ is Lipschitz and $b \in \mathbf{C}^{\beta}$ with $\beta \in (1 - \alpha/2, 1)$. For any $p \in (0, \alpha)$ and T > 0, there is a constant C such that for all $N \in \mathbb{N}$

$$\mathbb{E}\bigg[\sup_{t\in[0,T]}\left|X_{t}^{N}-X_{t}\right|^{p}\bigg]\leqslant CN^{-p\beta}$$

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへで

Two works about Euler approximation for SDEs Zimo Hao DDSDE Our results

Thanks for your attention!

◆□ > ◆□ > ◆豆 > ◆豆 > □ 豆 □

approximation for SDEs Zimo Hao DDSDE Our results

Two works about Euler