ICIAM 2023 Tokyo

Strong convergence of propagation of chaos for McKean-Vlasov SDEs with singular interactions

Zimo Hao Universität Bielefeld

A joint work with Michael Röckner and Xicheng Zhang

arXiv:2204.07952

2023.08.24

Background and Motivation

Main results

Future works

McKean-Vlasov SDEs

Consider the following distributional dependent SDEs (DDSDEs)

$$dX_t = b(t, X_t, \mu_t)dt + \sigma(t, X_t)dB_t,$$
(1)

where μ_t is the time marginal distribution of the solution.

McKean-Vlasov SDEs

Consider the following distributional dependent SDEs (DDSDEs)

$$dX_t = b(t, X_t, \mu_t)dt + \sigma(t, X_t)dB_t,$$
(1)

where μ_t is the time marginal distribution of the solution.

By Itô's formula, μ_t solves the following nonlinear Fokker-Planck equation (FPE) in the distributional sense:

$$\partial_t \mu_t = \frac{1}{2} \partial_t \partial_j \left(\sigma_{ik} \sigma_{jk}(t) \mu_t \right) - \operatorname{div}(b(t, \cdot, \mu_t) \mu_t). \tag{2}$$

- $b(\mu) = b * \mu$: (Vorticity form of the 2D Navier-Stokes equation), (Vlasov-Poisson-Fokker-Planck equation, kinetic), (surface quasi-geostrophic (SQG) equation, fractional),
- $b(x, \mu) = b(\frac{\mu(dx)}{dx}(x))$, quasilinear PDE: (Burgers' equation), (Porous medium equation), (distribution density dependent case), (Nemytskii-type)

McKean-Vlasov SDEs

► Consider the following distributional dependent SDEs (DDSDEs)

$$dX_t = b(t, X_t, \mu_t)dt + \sigma(t, X_t)dB_t,$$
(1)

where μ_t is the time marginal distribution of the solution.

▶ By Itô's formula, μ_t solves the following nonlinear Fokker-Planck equation (FPE) in the distributional sense:

$$\partial_t \mu_t = \frac{1}{2} \partial_i \partial_j \left(\sigma_{ik} \sigma_{jk}(t) \mu_t \right) - \operatorname{div}(b(t, \cdot, \mu_t) \mu_t). \tag{2}$$

- $b(\mu) = b * \mu$: (Vorticity form of the 2D Navier-Stokes equation), (Vlasov-Poisson-Fokker-Planck equation, kinetic), (surface quasi-geostrophic (SQG) equation, fractional),
- $b(x, \mu) = b(\frac{\mu(dx)}{dx}(x))$, quasilinear PDE: (Burgers' equation), (Porous medium equation), (distribution density dependent case), (Nemytskii-type)
- ► (McKean 1966): propose the DDSDE (1) to investigate a class of nonlinear PDEs like Vlasov equation (McKean-Vlasov SDEs).

Nemytskii-type

▶ Distribution density dependent SDEs (dDSDEs)

$$dX_t = b(t, X_t, \rho_t(X_t))dt + \sigma(t, X_t)dB_t,$$
(3)

where ρ_t is the density of the time marginal distribution of the solution w.r.t. the Lebesgue measure.

- ▶ Barbu-Röckner SIAM, SPDE, AOP, JFA 2018-2023: Superposition principle
 - Nonlinear FPEs (2) \rightarrow McKean-Vlasov SDEs (3).
- Singular interaction kernels: For the Nemytskii's type, we can consider it as a convolution with the Dirac measure:

$$b(x, \mu) = b(\delta * \mu(x)) = b(\frac{\mu(\mathrm{d}x)}{\mathrm{d}x}(x)).$$

N-particle system

► Consider the following moderately interacting *N*-particle system:

$$\mathrm{d}X^{N,i}_t = b\left(t, X^{N,i}_t + \frac{1}{N}\sum_{j=1}^N \phi_{\varepsilon(N)}(X^{N,i}_t - X^{N,j}_t)\right)\mathrm{d}t + \mathrm{d}B^i_t,$$

- $\triangleright \phi_{\varepsilon(N)}$: local interaction kernel; $\frac{1}{N}$: mean-field scaling (critical);
- $\triangleright \phi_{\varepsilon}(x) = \varepsilon^{-d} \varphi(x/\varepsilon)$ with some cut-off probability density function φ and $\varepsilon(N) \to 0$ as $N \to \infty$;
- \triangleright Random phenomena: a family of independent Brownian motions $\{B_t^i\}_{i=1}^{\infty}$.

N-particle system

► Consider the following moderately interacting *N*-particle system:

$$\mathrm{d}X^{N,i}_t = b\left(t, X^{N,i}_t + \frac{1}{N}\sum_{j=1}^N \phi_{\varepsilon(N)}(X^{N,i}_t - X^{N,j}_t)\right)\mathrm{d}t + \mathrm{d}B^i_t,$$

- $\triangleright \phi_{\varepsilon(N)}$: local interaction kernel; $\frac{1}{N}$: mean-field scaling (critical);
- $\triangleright \phi_{\varepsilon}(x) = \varepsilon^{-d} \varphi(x/\varepsilon)$ with some cut-off probability density function φ and $\varepsilon(N) \to 0$ as $N \to \infty$:
- \triangleright Random phenomena: a family of independent Brownian motions $\{B_t^i\}_{i=1}^{\infty}$.
- ▶ Applications: In plasma physics particles can represent ions and electrons in the Vlasov-Poisson equation (Vlasov SPU 1968); in biosciences they characterize the collective behavior of individuals (Simon-Olivera JDDE 2018) and describe the growth of cancer (Flandoli-Leimbach-Olivera JMAA 2019)......

Propogation of chaos

▶ Based on the famous Law of Large Numbers, we expect that

$$rac{1}{N}\sum_{j=1}^N \delta_{X^{N,j}_t}
ightarrow \mu_t.$$

► (Kac 1956), see also (Sznitman 1991)

$$\frac{1}{N} \sum_{j=1}^{N} \delta_{X_{t}^{N,j}} \to \mu_{t} \iff \underbrace{\mathbb{P} \circ (X_{t}^{N,1}, ..., X_{t}^{N,k}) \to \mu_{t}^{\otimes k} \quad \forall k \in \mathbb{N}}_{\text{Kar's chans}}.$$

- ▶ (Propogation of chaos)
 If Kac's chaos holds for t = 0, then it holds for t > 0.
 (McKean 1967, Osada 1987, Shkolnikov SPA 2012, Jabin-Wang Invent. 2018, Lacker ECP 2018,.....)
- Moderately interacting particle systems: (Oelschläger PTRF 1985), (Jourdain-Méléard AIHP 1998), (smooth φ)

Our aim

▶ Well-posedness (existence of the strong solution and pathwise uniqueness) for the following distribution density and distributional dependent SDE (dDDSDE):

$$dX_t = b(t, X_t, \rho_t(X_t), \mu_t)dt + \sigma(t, X_t)dB_t,$$
(4)

and its N-particle system when b is singular (L^p) .

 Propagation of chaos (qualitative and quantitative) for the moderately interacting particle systems.

Assumptions

▶ We define

$$\mathscr{I} := \{ (p,q) \in (2,\infty) \mid \frac{d}{p} + \frac{2}{q} < 1 \}$$

and assume for some $(p,q) \in \mathscr{I}$

$$c_0^{-1}|\xi| \le |\sigma(t,x)\xi| \le c_0|\xi|, \quad \|\nabla_x \sigma\|_{L^p_q(T)} < \infty,$$
 (H_{\sigma})

where $L^p_q(T) := L^q([0,T]; L^p(\mathbb{R}^d))$.

1 Theorem 1.

If $(r,\mu) \to b(\cdot,r,\mu)$ is a Lipschitz function from $\mathbb{R}_+ \times (\mathcal{P}(\mathbb{R}^d),\|\cdot\|_{var}) \to L^p_q(T)$ with some $(p,q) \in \mathscr{I}$, then there is a unique strong solution to dDDSDE (4) .

1 Theorem 1.

If $(r,\mu) \to b(\cdot,r,\mu)$ is a Lipschitz function from $\mathbb{R}_+ \times (\mathcal{P}(\mathbb{R}^d),\|\cdot\|_{var}) \to L^p_q(T)$ with some $(p,q) \in \mathscr{I}$, then there is a unique strong solution to dDDSDE (4) .

Well-known results.

- \triangleright (Li-Min SIAM 2016, Wang SPA 2018): $(\mathcal{P}(\mathbb{R}^d), W_p)$;
- > (Mishura-Veretenikov TPMS 2020): bounded drift;
- \triangleright (Röckner-Zhang *Bernoulli* 2021, Zhao 2020): $L_q^p(T)$;
- ▷ (Lacker *ECP* 2018, Han 2022): Entropy method;
- **>** · · ·

1 Theorem 1.

If $(r,\mu) \to b(\cdot,r,\mu)$ is a Lipschitz function from $\mathbb{R}_+ \times (\mathcal{P}(\mathbb{R}^d),\|\cdot\|_{var}) \to L^p_q(T)$ with some $(p,q) \in \mathscr{I}$, then there is a unique strong solution to dDDSDE (4) .

- ▶ Well-known results.
 - \triangleright (Li-Min SIAM 2016, Wang SPA 2018): $(\mathcal{P}(\mathbb{R}^d), W_p)$;

 - \triangleright (Röckner-Zhang *Bernoulli* 2021, Zhao 2020): $L_q^p(T)$;

 - ▷ (Lacker *ECP* 2018, Han 2022): Entropy method;

$$dX_t^n = b(t, X_t^n, \rho_t^{n-1}(X_t^n), \mu_t^{n-1})dt + \sigma(t, X_t^n)dB_t.$$

- \triangleright Convergence of μ^n : Entropy method;
- \triangleright Convergence of ρ^n : Uniform estimates for FPE.

Main results

 \triangleright We consider the following *N*-particle system:

$$dX_t^{N,i} = b \left(t, X_t^{N,i}, \frac{1}{N} \sum_{j=1}^N \phi(t, X_t^{N,i} - X_t^{N,j}) \right) dt + \sigma(t, X_t^{N,i}) dB_t^i.$$
 (5)

 \triangleright For b(t, x, y) = y, the related limit DDSDE is

$$dX_t = (\phi * \mu_t)(t, X_t)dt + \sigma(t, X_t)dB_t;$$

Main results

 \triangleright We consider the following *N*-particle system:

$$dX_t^{N,i} = b \left(t, X_t^{N,i}, \frac{1}{N} \sum_{j=1}^N \phi(t, X_t^{N,i} - X_t^{N,j}) \right) dt + \sigma(t, X_t^{N,i}) dB_t^i.$$
 (5)

ightharpoonup For b(t, x, y) = y, the related limit DDSDE is

$$dX_t = (\phi * \mu_t)(t, X_t)dt + \sigma(t, X_t)dB_t;$$

ightharpoonup For $\phi(t,x)=\varepsilon^{-d}\varphi(x/\varepsilon)$ with some $\varepsilon=\varepsilon(N)\to 0$ as $N\to\infty$, the related limit DDSDE is the Nemytskii-type:

$$dX_t = b(t, X_t, \rho_t(X_t))dt + \sigma(t, X_t)dB_t.$$

2 Theorem 2.

Assume for some function $h \in L^p_q(T)$ with some $(p,q) \in \mathscr{I}$ and constant $\kappa_1 > 0$

$$|b(t,x,y)| \le h(t,x) + \kappa_1|y|, \quad |b(t,x,y_1) - b(t,x,y_2)| \le \kappa_1|y_1 - y_2|.$$
 (H_b)

Given any $\phi \in L_q^p(T)$, there is a unique strong solution to (5).

► This is an extension result to those in (Krylov-Röckner *PTRF* 2005), since for $B_i(t, x_1, ..., x_N) := \frac{1}{N} \sum_{j=1}^{N} \phi(t, x_i - x_j)$ cannot satisfy

$$\frac{Nd}{p} + \frac{2}{q} < 1, \quad N \to \infty.$$

2 Theorem 2.

Assume for some function $h \in L_q^p(T)$ with some $(p,q) \in \mathscr{I}$ and constant $\kappa_1 > 0$

$$|b(t,x,y)| \le h(t,x) + \kappa_1 |y|, \quad |b(t,x,y_1) - b(t,x,y_2)| \le \kappa_1 |y_1 - y_2|.$$
 (H_b)

Given any $\phi \in L_q^p(T)$, there is a unique strong solution to (5).

▷ This is an extension result to those in (Krylov-Röckner *PTRF* 2005), since for $B_i(t, x_1, ..., x_N) := \frac{1}{N} \sum_{j=1}^{N} \phi(t, x_i - x_j)$ cannot satisfy

$$\frac{Nd}{p} + \frac{2}{q} < 1, \quad N \to \infty.$$

- ▷ Idea of the proof: Introduce the mixed L^p space with permutation. We note that for different i = 1, ..., N, B_i are in different mixed L^p spaces. Thus the result in (Ling-Xie *POTA* 2022) cannot be valid here.
- ▷ Difficulty and innovation: Obtain the maximal regularity of the solution to the related PDE in a sum space and construct the Zvonkin transformation under this mixed L^p space with permutation setting.

Main results-(Propagation of chaos)

▷ Consider the *N*-independent copies of the limit McKean-Vlasov SDE:

$$dX_t^i = b(t, X_t, \phi * \mu_t(t, X_t^i))dt + \sigma(t, X_t^i)dB_t^i.$$

3 Theorem 3.

Assume (H_b) holds. Given any $\phi \in L^p_q(T)$ with some $(p,q) \in \mathcal{I}$, propagation of chaos holds. Moreover, if ϕ is bounded and $(X_0^{N,1},...,X_0^{N,N}) = (X_0^1,...,X_0^N)$, we have the following optimal rate for the path estimate:

$$\sup_{i} \mathbb{E}\left(\sup_{t \in [0,T]} |X_{t}^{N,i} - X_{t}^{i}|\right) \leq \frac{Ce^{CT\|\phi\|_{\infty}}}{\sqrt{N}}.$$

- ▶ This gives a path version of propagation of chaos for singular interaction kernels.
- \triangleright The nonlinearity of $\mu \to b(t, x, \phi * \mu)$ makes some technical trouble.
- \triangleright The independence of the initial data is not necessary for the propagation of chaos when $\phi \in L_a^p(T)$ (strong solution).

Main results-(Propagation of chaos)

▷ Consider the *N*-independent copies of the limit McKean-Vlasov SDE:

$$dX_t^i = b(t, X_t, \rho_t(X_t^i))dt + \sigma(t, X_t^i)dB_t^i.$$

3 Theorem 3.

Assume (H_b) holds and $(X_0^{N,1},...,X_0^{N,N})=(X_0^1,...,X_0^N)$. For any bounded probability density function φ and $\phi(t,x)=\varepsilon^{-d}\varphi(x/\varepsilon)$ there is some $\beta>0$

$$\mathbb{E}\left(\sup_{t\in[0,T]}|X_t^{N,i}-X_t^i|\right)\leqslant C\mathrm{e}^{C\varepsilon_N^{-2d}}\frac{1}{N}+C\varepsilon_N^{\beta}.$$

- \triangleright When $\varepsilon \sim (\ln N)^{-\delta}$ with some $\delta > 0$, we have the path convergence $X^{N,i} \to X^i$.
- \triangleright Compared with the results in previous work for moderately interacting particle systems, we don't need the smooth assumptions on φ . We believe that this is useful for numerical experiments by taking $\varphi(x) := 1_{[0,1]}(x)$.

Future works

- (Ongoing work with Jean-François Jabir, Stéphane Menozzi, Michael Röckner and Xicheng Zhang)
 - \triangleright Convergence rate of propagation of chaos for $W^{-\beta,p}$ kernels and second order system:

$$\begin{cases} \mathrm{d}X_t^{N,i} = V_t^{N,i}\mathrm{d}t, \\ \mathrm{d}V_t^{N,i} = \frac{1}{N}\sum_{j \neq i}(K*\phi_N)(t,X_t^{N,i} - X_t^{N,j})\mathrm{d}t + \sqrt{2}\mathrm{d}B_t^i, \end{cases}$$

where i = 1, 2, ..., N,

- $(X^{N,i}, V^{N,i}) \in \mathbb{R}^{2d}$: position and velocity of particle number i;
- $\phi_N(t,x,v) = N^{4\vartheta d} \varphi(N^{3\vartheta}(x+tv),N^{\vartheta}v) \text{ with some } \vartheta < 1/(4d);$
- \triangleright Propagation of chaos for McKean-Vlasov SDEs driven by α -stable processes.

Thank you!