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Part 1 : Introduction
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Motivation

I Let d > 2. Consider the following stochastic differential equation :{
dXt = A(Xt)dBt + b(Xt)dt,
X0 = x ∈ Rd

(1.1)

where Bt = (B1
t , ..., B

d
t ) is a d-dimensional standard Brownian motion, b :

Rd → Rd is a measurable function, and A : Rd → Rd ⊗ Rd is a d × d matrix-
valued measurable function and satisfies

(H) A ∈ C(Rd) and for some c0 > 0, it holds that

|detA(x)| > c0, x ∈ Rd.

I Under the above assumptions and b is bounded, it is well known that for each x ∈
Rd, SDE (1.1) admits a unique weak solution Xt(x)(see [1]) . Furthermore, if
A and b have more regularity it admits a density pt(x, y) enjoying the following
estimates(see [2]): for any T > 0, there are constants ci > 0 such that for all
0 < t < T and x, y ∈ Rd

c1t
−d/2e−c2|x−y|2/t 6 pt(x, y) 6 c3t

−d/2e−c4|x−y|2/t.

[1] Bass, R.F., Diffusions and Elliptic Operators. Springer-Verlag, New York, 1997
[2] Z.-Q. Chen, E. Hu, L. Xie, and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps.J.
Differential Equations, 263 (2017), 6576-6634.



Introduction Main Results Sketch of the proof Future works

I Notice that Bit in Bt = (B1
t , ..., B

d
t ) are i.i.d. 1-dimensional standard Brownian

motions.

I Naturally, we consider the standard cylindricalα-stable processLt = (L1
t , ..., L

d
t )

and the following SDE{
dXt = A(Xt−)dLt + b(Xt)dt,
X0 = x ∈ Rd,

(1.2)

where Lit are i.i.d. 1-dimensional standard α-stable processes.

I In fact, Lt admits a density pt(x) enjoying the following estimates :
For any T > 0, there are constants c1, c2 > 0 such that for all 0 < s < t < T
and x ∈ Rd

c1Πd
i=1

t

(
√
t+ |xi|)α+1

6 pt(x) 6 c2Πd
i=1

t

(
√
t+ |xi|)α+1

.

I However, there is no result for the density estimate for Xt. Actually, the exis-
tence of the solution Xt and the density of Xt are still problem.
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I More generality, we consider the following SDE driven by the cylindrical α-
stable process Lt,{

dXx
t =
´
Rd σ(Xt−, z)N(dt,dz) + b(Xt)dt,

Xx
0 = x ∈ Rd,

(1.3)

where σ = (σi)di=1 : Rd × Rd → Rd is a measurable function, and N(dt, dz)
is the Poisson random measure of Lαt defined as follow

N((s, t], E) :=
∑
s<u6t

1(Lu−Lu−)∈E .

I Define ν(E) := EN([0, 1], E). For simplify, we assume that for all x ∈ Rd and
0 < r < R < +∞ ˆ

r6|z|6R
σ(x, z)ν(dz) = 0.

Questions:

I In what condition of σ and b, there is a weak(or strong) solution of SDE (1.3)?
I If there is a weak solution, does the solution have a density?
I If there is a weak solution, can we get some precise estimates for it?
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I When Lt is a d-dimensional standard α-stable process, the infinitesimal genera-
tor of Xx

t has the following form

L f(x) = p.v.
ˆ
Rd

f(x+ σ(x, z))− f(x)
|z|d+α dz

= p.v.
ˆ
Rd

f(x+ z)− f(x)
|z|d+α κ(x, z)dz,

(1.4)

where

κ(x, z) = |z|d+α

|σ−1(x, z)|d+α |det∇zσ−1(x, z)|.

I When Lt is a d-dimensional cylindrical α-stable process, which is our case, the
infinitesimal generator of Xx

t has the following form

L f(x) =
d∑
i=1

p.v.
ˆ
R

f(x+ σ(x, zei))− f(x)
|z|1+α dz,

where ei = (0, .., 1(i-th), .., 0).

I Notice that, it is impossible to find such a κ in (1.4) this time.
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I Let F be the Fourier transform. The infinitesimal generator of d-dimensional
cylindrical α-stable process is

∑d

i=1(∂i∂i)
α
2 with

F (
d∑
i=1

(∂i∂i)
α
2 f)(ξ) = c

d∑
i=1

|ξi|αF (f)(ξ) := ψ1(ξ)F (f)(ξ),

where ψ1 ∈ C∞(Rd \ (∪di=1Ri)), where

Ri := {x ∈ Rd;xi = 0}.

I The infinitesimal generator of d-dimensional standard α-stable process is ∆α
2

with

F (∆
α
2 f)(ξ) = c|ξ|αF (f)(ξ) := ψ2(ξ)F (f)(ξ),

where ψ2 ∈ C∞(Rd \ 0).
I Therefore, compared with standard α-stable process, the cylindrical one is more

difficult to be dealed with.
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Assumptions

(Aσ) σ(x, z) = A(x)z for some matrix value mapA = (ai,j) : Rd → Rd⊗Rd, there
is a positive number c0 such that for any x, y, ξ ∈ Rd and all i, j = 1, ..., d

c−1
0 |ξ| 6 |ξ ·A(x)ξ| 6 c0|ξ|, (1.5)

|ai,j(x)− ai,j(y)| 6 c0|x− y|. (1.6)

(Abβ) For β ∈ (0, 1),

‖b‖Cβ := sup
x∈Rd

|b(x)|+ sup
|x−y|6=0

|b(x)− b(y)|
|x− y|β <∞. (1.7)

I We always assume that there is a weak solution Xx
t of SDE (1.3) and define

Pσ,bt φ(x) = E(φ(Xx
t )), Pσt := Pσ,0t .
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Well-known results

2006 (Bass-Chen)
There is a weak solution Xx

t of (1.3) when σ(x, z) = σ(x)z is continuous in
variable x and b ≡ 0.

2010 (Bass-Chen)
Assume σ(x, z) = σ(x)z is continuous in variable x and b ≡ 0. For any
bounded domain D ⊂ Rd, define τD := inf{t > 0, Xx

t /∈ D}. If any bounded
function h satisfies

h(x) = E[h(Xx
τD )] for every x ∈ D,

then h is Hölder continuous in D.

2012 (Debussche-Fournier )

2017 (Chen-Zhang-Zhao)
Under the condition (Aσ) and (Abβ) with β ∈ (1− α

2 , 1), there is a unique strong
solution of (1.3).
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2018 (Kulczycki-Ryznar-Sztonyk)
Assume b ≡ 0 and Lνt is a cylindrical α-stable process with α ∈ (0, 1). Under
the condition (Aσ), for any γ ∈ (0, α), T > 0, there is a constant C such that
for all t ∈ (0, T ], x, y ∈ Rd and f ∈ L∞(Rd)

|Pσt f(x)− Pσt f(y)| 6 C|x− y|γt−
γ
α ‖f‖L∞ . (1.8)

For any γ ∈ (0, α
d

), T > 0, there is a constant C such that for all t ∈ (0, T ],
x ∈ Rd and f ∈ L∞(Rd) ∩ L1(Rd)

|Pσt f(x)| 6 Ct−
γd
α ‖f‖1−γ

L∞ ‖f‖
γ

L1 . (1.9)

I Notice that they can not deal the case α ∈ [1, 2).

I Hölder index γ can not be 1.
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Part 2: Our main results
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Littlewood-Paley decomposition and Besov space

I Let φ0 be a radial C∞-function on Rd with
φ0(ξ) = 1 for ξ ∈ B1 and φ0(ξ) = 0 for ξ /∈ B2.

I For ξ = (ξ1, · · · , ξn) ∈ Rd and j ∈ N, define

φj(ξ) := φ0(2−jξ)− φ0(2−(j−1)ξ).
I It is easy to see that for j ∈ N, φj(ξ) = φ1(2−(j−1)ξ) > 0 and

suppφj ⊂ B2j+1 \B2j−1 ,

k∑
j=0

φj(ξ) = φ0(2−kξ)→ 1, k →∞.

I Notice that {φj}j∈N0 is a partition of unity of

Rd = B2 ∪
(
∪j∈N (B2j+1 \B2j−1 )

)
.
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I For given j ∈ N0, the block operator ∆j is defined on S ′ by

∆jf(x) := F−1(φjF (f))(x) = F−1(φj) ∗ f(x)

= 2·m(j−1)
ˆ
Rd

F−1(φ1)(2(j−1)(x− y))f(y)dy.

I For j ∈ N0, by definition it is easy to see that

∆j = ∆j∆̃j , where ∆̃j := ∆j−1 + ∆j + ∆j+1 with ∆−1 ≡ 0, (2.1)

and ∆j is symmetric in the sense that

〈∆jf, g〉 = 〈f,∆jg〉.

I The cut-off low frequency operator Sk is defined by

Skf :=
k−1∑
j=0

∆jf = 2dk
ˆ
Rd
φ̌0(2k(x− y))f(y)dy → f. (2.2)

I We rewrite (2.2) as

f =
∞∑
j=0

∆jf,

which is called the Littlewood-Paley decomposition.
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Definition 1 (Besov space)
For any s ∈ R and p ∈ [1,∞], the Besov space Bsp,∞ is defined by

Bsp,∞(Rd) :=
{
f ∈ S ′(Rd) : ‖f‖Bsp,∞ := sup

j>0

(
2sj‖∆jf‖Lp

)
<∞

}
.

Proposition 2

For any s1 > 0 and s2 > 0 with s2 /∈ N,

Hs1,p(Rd) ⊂ Bs1
p,∞(Rd) and Cs2 (Rd) = Bs2

∞,∞(Rd),

where Hs1,p(Rd) and Cs2 (Rd) are the common Sobolev space and Hölder space
respectively.
For any n ∈ N,

Cn(Rd) ⊂ Bn∞,∞(Rd).
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Our assumption for σ

(Hσ
µ) There is a constant c0 > 1 such that for all x, y, z ∈ Rd and all λ > 0

inf
ω∈Sd−1

inf
λ>0

λ

d∑
i=1

|ω · σ(x, ei
λ

)| > c−1
0 , (2.3)

|σ(x, z)− σ(y, z)| 6 c0|x− y||z|.

c−1
0 |z| 6 |σ(x, z)| 6 c0|z|.

Remark 3

I Notice that condition Hσ
s implies condition Hσ

µ here.

I σ(x, z) = (2 + sinz1)z satisfies condition Hσ
µ but not satisfies condition Hσ

s .
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Main Results

Theorem 4

Let α ∈ (0, 2) and β ∈ [0, 1] with α+ β > 1. Assume (Hσ), ‖∇σ‖∞ 6 c1 for some
c1 > 0, and one of the following conditions holds:

(i) b = 0, β = 1; (ii) α ∈ ( 1
2 , 2) and b ∈ L∞(R+; Cβ).

Let Xs,t(x) be the unique solution of SDE (??) and define

Ps,tϕ(x) := Eϕ(Xs,t(x)).
Let γ ∈ [0, α+α∧ β) and η ∈ (−((α+ β− 1)∧ 1), γ]. For any T > 0, there exists
a constant C > 0 such that for all 0 6 s < t 6 T ,

‖Ps,tϕ‖Bγ∞,∞ 6 C(t− s)
η−γ
α ‖ϕ‖Bη∞,∞ . (2.4)

I Notice that (2.4) reduced the restriction of the γ in (1.8)
from (0, α) to (0, α + α ∧ β) by taking η = 0. In particular, we have gradient
estimate. Moreover, we can deal with the case α > 1.

I By a way of interpolation, we also get (1.9).
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Main Results

Corollary 5

(A) Let ϕ ∈ ∪η<(α+β−1)∧1B−η∞,∞. For any 0 6 s < t, Ps,tϕ ∈ ∩γ<α+α∧βBγ
∞,∞

solves the following backward Kolmogorov equation: for all x ∈ Rd,

Pt0,tϕ(x) = Pt1,tϕ(x) +
ˆ t1

t0

L σ,b
s Ps,tϕ(x)ds, 0 6 t0 < t1 < t. (2.5)

(B) For α ∈ ( 1
2 , 2), the following gradient estimate holds: for 0 6 s < t 6 T ,

‖∇Ps,tϕ‖∞ 6 C(t− s)−
1
α ‖ϕ‖∞. (2.6)

(C) For each s < t, the random variable Xs,t(x) admits a density ps,t(x, ·) with

ps,t(x, ·) ∈ ∩η<(α+β−1)∧1Bη
1,1. (2.7)

I Notice that (??) reduced the restriction of the γ in (1.8)
from (0, α) to (0, α+α∧β). In particular, we have gradient estimate. Moreover,
we can deal with the case α > 1.

I By a way of interpolation, we also get (1.9) from Theorem??.
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Part 3: Proof



Introduction Main Results Sketch of the proof Future works

PDE related to SDE

I Naturally we consider the following PDE,{
∂tu(t, x) = L α

σ u(t, x) + b(x) · ∇u(t, x),
u(0, x) = φ(x),

(3.1)

where φ ∈ C∞(Rd) and

L α
σ u(t, x) =

d∑
i=1

p.v.
ˆ
R

(
u(t, x+ σ(x, z))− u(t, x)

)
ν(dz).

Definition 6

We call a function u(t, x) ∈ L∞loc([0,+∞);Cα+ε(Rd)∩C1+ε(Rd)) for some ε > 0
be a classical solution of PDE (3.1) in [0, T ] if u,∇u ∈ Cloc([0,∞) × Rd) and for
all t ∈ [0,∞) and x ∈ Rd

u(t, x) =
ˆ t

0
L α
σ u(s, x) + b(x) · ∇u(s, x)ds+ φ(x)
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I Is there a classical solution of PDE (3.1)?
I Fortunately, we have a priori estimate: under the condition (Hσµ) and (Hbβ ) with β ∈

((1− α)∨ 0, α), for any T > 0 and ε ∈ (0, β ∧ α), there is a constant C such that
for all t ∈ [0, T ], φ ∈ C∞ and classical solutions u

‖u(t)‖Cα+ε 6 C‖φ‖Cα+ε . (3.2)

I By (3.2) some continuity methods and vanishing viscosity approach, we obtain the
existence of the classical solution.

I Let u be a classical solution. By Itô formula, s → u(t − s,Xx
s ) is a martingale

for s ∈ [0, t]. Then

Pσ,bt φ(x) = E(φ(Xx
t )) = E(u(t− s,Xx

s )) = E(u(t, x)) = u(t, x).

I The equality above tell us that if we want to establish any estimate of Pσ,bt φ(x),
it is enough to establish the estimate of classical solution u.

I Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equiva-
lent to the uniqueness of classical solution of PDE (3.1).
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((1− α)∨ 0, α), for any T > 0 and ε ∈ (0, β ∧ α), there is a constant C such that
for all t ∈ [0, T ], φ ∈ C∞ and classical solutions u

‖u(t)‖Cα+ε 6 C‖φ‖Cα+ε . (3.2)

I By (3.2) some continuity methods and vanishing viscosity approach, we obtain the
existence of the classical solution.

I Let u be a classical solution. By Itô formula, s → u(t − s,Xx
s ) is a martingale

for s ∈ [0, t]. Then

Pσ,bt φ(x) = E(φ(Xx
t )) = E(u(t− s,Xx

s )) = E(u(t, x)) = u(t, x).

I The equality above tell us that if we want to establish any estimate of Pσ,bt φ(x),
it is enough to establish the estimate of classical solution u.

I Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equiva-
lent to the uniqueness of classical solution of PDE (3.1).
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Crucial lemma

I Let θ : R+ → Rd is a measurable function and ps,t be the transition probability
of process

Zs,t :=
ˆ t

s

ˆ
Rd
σ(θ(r), z)Ñ(dz, dr).

Lemma 7 (Crucial Lemma)

I For any β ∈ [0, α), γ ∈ [0,+∞) and T > 0, there is a constants C such that
for m ∈ N0 all j > 0, f ∈ L1

loc(R+) and t ∈ (0, T ] s ∈ [0, t),ˆ t

0

ˆ
Rd
|x|β |∇m∆jps,t(x)||f(s)|dxds 6 C2(m−γ−β)j

ˆ t

0
(t− s)−

γ
α |f(s)|ds.

I For any m ∈ N0, q ∈ [1,∞], 1
p

+ 1
q

= 1 and γ ∈ [0,+∞), there is a constant
C such that for all (t− s) ∈ (0, T ],

‖∇m∆jps,t‖Lq(Rd) 6 C(t− s)−
1
α

(γ−m+ d
p

)2−γj .
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The key point of proof

I For simplify, we assume σ(x, z) = A(x)z for some matrix value mapA : Rd →
Rd ⊗ Rd and a(t) := A(θ(t)). Recall that ps,t is the transition probability of

Zs,t =
ˆ t

s

a(r)dLαt with λ
1
αLαλt

(d)= Lαt .

Therefore using the change of variable and the scaling property, we haveˆ t

s

a(r)dLαr =
ˆ t−s

0
a(r + s)d

(
Lαr+s − Lαs

)
(d)= (t− s)−

1
α

ˆ 1

0
a(r(t− s) + s)dLαr .

We denote by p̄0,1 the density of
´ 1

0 a(r(t− s) + s)dLαr , then

ps,t(x) = (t− s)−
d
α p̄0,1((t− s)−

1
α x).

I Condition

inf
ω∈Sd−1

inf
λ>0

λ

d∑
i=1

|ω · σ(x, ei
λ

)| > c−1
0 , (3.3)

guarantee that for any n ∈ N0 and β ∈ [0, α), there is a constant C such thatˆ
Rd
|x|β |∇np̄0,1(x)|dx 6 C.
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Our approach

I Firstly, we use a technology of translate alone the characteristic line θt and get a
new equation: {

∂tũ(t, x) = L α
σ̃ ũ(t, x) + b̃(x) · ∇ũ(t, x),

u(0, x) = φ(x),
(3.4)

where ũ(t, x) = u(t, x+θt) and b̃(x) = b(x+θt)−b(θt). Notice that |b̃(x)| .
|x|β which releases the regularity of spatial x.

I Then we have the following presentation

ũ(t, x) =
ˆ t

0
Ps,t

(
L α
σ̃ −L α

σ̃0

)
ũ(s, x)ds+

ˆ t

0
Ps,t(b̃ · ∇ũ)(s, x)ds (3.5)

+ P0,tφ(x), (3.6)

where L α
σ̃0 is a infinitesimal generator of some process introduced in the crucial

lemma.
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I Next step is a highlight point. We operator the block operator ∆j on both sides
and only look at the point zero:

∆j ũ(t, 0) =
ˆ t

0
∆jPs,t

(
L α
σ̃ −L α

σ̃0

)
ũ(s, 0)ds+

ˆ t

0
∆jPs,t(b̃ · ∇ũ)(s, 0)ds

+ ∆jP0,tφ(0).

I Notice that ∆ju(t, θt) = ∆j ũ(t, 0). We take the supremum of the initial point
of the θt and get the estimate of ‖∆ju(t)‖∞. Then by taking sipremum of j, we
have for some ϑ > −1 and any γ1 ∈ [0, α):

‖u(t)‖Bγ1
∞,∞

.
ˆ t

0
(t− s)ϑ‖u(s)‖Bγ1

∞,∞
ds+ t

− 1
α

(
d
p
−γ2+γ1

)
‖φ‖Bγ2

p,∞
.

I Notice that a highlight point here is that we turn the convolution Ps,tf into an in-
ner product 〈ps,t, f〉. Therefore, we use our crucial lemma and get the regularity
of the space.
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Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)
Assume A > 0. For any θ, ϑ > −1 and T > 0, there exists a constant C =
C(A, θ, ϑ, T ) > 0 such that if locally integrable functions f : R+ → R+ satisfy

f(t) 6 A

ˆ t

0
(t− s)θf(s)ds+Atϑ, t ∈ (0, T ],

then
f(t) 6 Ctϑ, t ∈ (0, T ].

I When d
p
− γ2 + γ1 < α, t

− 1
α

(
d
p
−γ2+γ1

)
is a local integral function on [0, T ].

We obtain main result for γ1 ∈ [0, α) and d
p
− γ2 < α− γ1.

I To lift the limitation of γ1 from [0, α) to [0, α + α ∧ 1), we need a lift theorem
by the semigroup property of Feller process.

I The proof can be found in [1].
[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation.
J.Funct. Anal., 258 (2010), 1361-1425.
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Lift lemma

Lemma 9
Assume one of the following conditions holds,

I α ∈ (0, 2), b ≡ 0 and let β = 1.

I α ∈ ( 1
2 , 2) and condition (Hb

β) holds with β ∈ ((1− α) ∨ 0, α ∧ 1).

Under condition (Hσ
µ), for any

γ ∈ (α, α+ α ∧ β), δ ∈ [0, α),

there is a constant CT such that for all φ ∈ C∞0 (Rd) and all t ∈ (0, T ],

‖Pσ,bt φ‖Bγ∞,∞ 6 CT t
− δ
α ‖φ‖

B
γ−δ
p,∞

. (3.7)

I Notice that Pσ,bt φ = Pσ,bt
2
Pσ,bt

2
φ and (α, α+ α ∧ β)− α ⊂ (0, α), by this C-K

property, we obtain the main result.
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Characteristic line

I Let θyt be a solution of following ODE{
dθyt = −b(θyt ),
θy0 = y,

for t ∈ [0, T ] and y ∈ Rd.

Remark 10

Under the condition Hb
β , there is a constant C such that for any |x− y| > 1,

|b(x)− b(y)| 6 C|x− y|,

which implies that θyt would never blow up. See Wang-Zhang[1].

[1] Degenerate SDE with Hölder-Dini drift and non-Lipschitz coefficient. SIAM J. Math. Anal. 48 (2016), 2189–2226.
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Perturbation

I Define Θy
t g(x) := g(x+ θyt ). Then Θy

t u satisfies a new PDE{
∂tΘy

t u(t, x) = L α
0 Θy

t u(t, x) + L̃ αΘy
t u(t, x) + b̃(x) · ∇Θy

t u(t, x),
Θy
t u(0, x) = φ(x+ y),

(3.8)

I where b̃(x) = Θy
t b(x)−Θy

t b(0),

L α
0 g(x) =

ˆ
Rd

(
g(x+ σ(θyt , z))− g(x)− 1α>1σ(θyt , z) · ∇g(x)

)
ν(dz),

L̃ αg(x) =
ˆ
Rd

Dy
z g(x)ν(dz)

:=
ˆ
Rd

(
g(x+ σ(x+ θyt , z))− g(x+ σ(θyt , z))− 1α>1σ̃(x, z) · ∇g(x)

)
ν(dz),

with σ̃(x, z) = σ(x+ θyt , z)− σ(θyt , z).

I Notice that there is a constant C such that |b̃(x)| 6 C|x|β ∧ |x| and

σ̃(0, z) = 0, |σ̃(x, z)| 6 c0|x||z|, |∇xσ̃(x, z)| 6 c0|z|.



Introduction Main Results Sketch of the proof Future works

Perturbation

I Define Θy
t g(x) := g(x+ θyt ). Then Θy

t u satisfies a new PDE{
∂tΘy

t u(t, x) = L α
0 Θy

t u(t, x) + L̃ αΘy
t u(t, x) + b̃(x) · ∇Θy

t u(t, x),
Θy
t u(0, x) = φ(x+ y),

(3.8)

I where b̃(x) = Θy
t b(x)−Θy

t b(0),

L α
0 g(x) =

ˆ
Rd

(
g(x+ σ(θyt , z))− g(x)− 1α>1σ(θyt , z) · ∇g(x)

)
ν(dz),

L̃ αg(x) =
ˆ
Rd

Dy
z g(x)ν(dz)

:=
ˆ
Rd

(
g(x+ σ(x+ θyt , z))− g(x+ σ(θyt , z))− 1α>1σ̃(x, z) · ∇g(x)

)
ν(dz),

with σ̃(x, z) = σ(x+ θyt , z)− σ(θyt , z).

I Notice that there is a constant C such that |b̃(x)| 6 C|x|β ∧ |x| and

σ̃(0, z) = 0, |σ̃(x, z)| 6 c0|x||z|, |∇xσ̃(x, z)| 6 c0|z|.



Introduction Main Results Sketch of the proof Future works

Perturbation

I Define Θy
t g(x) := g(x+ θyt ). Then Θy

t u satisfies a new PDE{
∂tΘy

t u(t, x) = L α
0 Θy

t u(t, x) + L̃ αΘy
t u(t, x) + b̃(x) · ∇Θy

t u(t, x),
Θy
t u(0, x) = φ(x+ y),

(3.8)

I where b̃(x) = Θy
t b(x)−Θy

t b(0),

L α
0 g(x) =

ˆ
Rd

(
g(x+ σ(θyt , z))− g(x)− 1α>1σ(θyt , z) · ∇g(x)

)
ν(dz),

L̃ αg(x) =
ˆ
Rd

Dy
z g(x)ν(dz)

:=
ˆ
Rd

(
g(x+ σ(x+ θyt , z))− g(x+ σ(θyt , z))− 1α>1σ̃(x, z) · ∇g(x)

)
ν(dz),

with σ̃(x, z) = σ(x+ θyt , z)− σ(θyt , z).

I Notice that there is a constant C such that |b̃(x)| 6 C|x|β ∧ |x| and

σ̃(0, z) = 0, |σ̃(x, z)| 6 c0|x||z|, |∇xσ̃(x, z)| 6 c0|z|.



Introduction Main Results Sketch of the proof Future works

I Notice that L α
0 is the infinitesimal generation of the process

L0
s,t =

ˆ t

s

ˆ
Rd
σ(θyr , z)Ñ(dr, dz).

I Since the constant c0 in condition Hσ
µ is independent with x and z, we drop the

coefficient y and denote σ(r, z) := σ(θyr , z).

I We denote by ps,t(x) the transition probability of L0
s,t, then crucial lemma is

available for ps,t. By the Duhamel’s formula,

Θy
t u(t, w) =

ˆ t

0

ˆ
Rd
ps,t(w − x)L̃ αΘy

t u(s, x)dxds

+
ˆ t

0

ˆ
Rd
ps,t(w − x)b̃(x) · ∇Θy

t u(s, x)dxds

+
ˆ
Rd
p0,t(w − x)φ(x+ y)dx.

I We operate the block operator ∆j on both sides and let w = 0,

∆ju(t, θyt ) = ∆jΘy
t u(t, 0) =

ˆ t

0

ˆ
Rd

∆jps,t(−x)L̃ αΘy
t u(s, x)dxds

+
ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∇Θy
t u(s, x)dxds+

ˆ
Rd

∆jp0,t(−x)φ(x+ y)dx,

:= I j
1 + I j

2 + I j
3 .

(3.9)
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Estimate for I j
3

I (∆̃j∆j = ∆j and ∆j is symmetric)⇒

I j
3 =
ˆ
Rd

∆jp0,t(−x)φ(x+ y)dx =
ˆ
Rd

∆jp0,t(−x)∆̃jφ(x+ y)dx.

I (Hölder inequlity)⇒

|I j
3 | 6

ˆ
Rd
|∆jp0,t(−x)||∆̃jφ(x+ y)|dx 6 ‖∆jp0,t‖Lq‖∆̃jφ‖Lp ,

where 1
p

+ 1
q

= 1.
I (Definition of Besov space and crucial lemma 7)⇒

|I j
3 | 6 2−γ2j‖∆jp0,t‖Lq‖φ‖Bγ2

p,∞
. 2−γ1jt

− 1
α

( d
p
−γ2+γ1)‖φ‖Bγ2

p,∞
.

I Notice that d
p
− γ2 + γ1 > 0, which is γ2 6 d

p
+ γ1.
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Estimate for I j
2

I Define function χ ∈ C∞0 with

χ(x) =
{

1 when |x| < 1
2

0 when |x| > 1.

Lemma 11

Under condition Hb
β , function bz(x) := χ(x)

(
b(x + z) − b(z)

)
∈ Cβ(Rd). There

is a constant C such that all z ∈ Rd
‖bz‖Cβ 6 C.

I By Lemma11 and the fact that
‖f‖Cβ(Rd) . sup

z∈Rd
‖f‖Cβ(B(z,1)),

we assume b ∈ Cβ and have a commutator estimate:

Lemma 12 (Chen-Zhang-Zhao 2017)

For β ∈ (0, 1) and θ ∈ (−β, 0], there is a constant C such that

‖[∆j , f ]g‖∞ 6 C2−j(β+θ)‖f‖Cβ‖g‖Bθ∞ ,
where [∆j , f ]g := ∆jfg − f∆jg.
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Estimate for I j
2

Lemma 13

Assume α ∈ ( 1
2 , 2). Under condition Hb

β with β ∈ ((1 − α) ∨ 0, α ∧ 1). For any
γ1 ∈ (0, α) and T > 0, there is a constant C such that for all t ∈ (0, T ], j ∈ N0 and
all classical solution u,

|I j
2 | 6 C2−γ1

ˆ t

0
(t− s)−

2γ1+β−1
α ‖u(s)‖Cγ1 ds.

Proof.
Notice that

ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∇Θy
t u(s, x)dxds

=
ˆ t

0

ˆ
Rd

∆jps,t(−x)[∆̃j , b̃(x)]∇Θy
t u(s, x)dxds

+
ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∆̃j∇Θy
t u(s, x)dxds.

By crucial lemma and commutator estimate, we complete the proof.



Introduction Main Results Sketch of the proof Future works

Estimate for I j
2

Lemma 13

Assume α ∈ ( 1
2 , 2). Under condition Hb

β with β ∈ ((1 − α) ∨ 0, α ∧ 1). For any
γ1 ∈ (0, α) and T > 0, there is a constant C such that for all t ∈ (0, T ], j ∈ N0 and
all classical solution u,

|I j
2 | 6 C2−γ1

ˆ t

0
(t− s)−

2γ1+β−1
α ‖u(s)‖Cγ1 ds.

Proof.
Notice that

ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∇Θy
t u(s, x)dxds

=
ˆ t

0

ˆ
Rd

∆jps,t(−x)[∆̃j , b̃(x)]∇Θy
t u(s, x)dxds

+
ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∆̃j∇Θy
t u(s, x)dxds.

By crucial lemma and commutator estimate, we complete the proof.



Introduction Main Results Sketch of the proof Future works

Estimate for I j
1

I Recall that

Dy
z f(x) = f(x+ σ(x+ θyt , z))− f(x+ σ(θyt , z))− 1α>1σ̃(x, z) · ∇f(x).

I Define

µθ(h) :=
ˆ
Rd

(1 ∧ |x|)θ|h(x)|dx and 〈f, g〉 :=
ˆ
Rd
f(x)g(x)dx.

Lemma 14

For any θ ∈ [0, 1], there exists a constant C = C(d, θ) > 0 such that for all |z| 6
1

2c0
, f ∈ Cθ and g ∈ C2

|〈Dy
z f, g〉| 6 C|z|θ‖f‖∞

[
µ0(|g|) + µθ(|∇g|)θµθ(|g|)1−θ]

when α < 1 and

|〈Dy
z f, g〉| 6 C|z|1+θ‖f‖Cθ

[
µ0(|g|) + µ1(|∇g|) + µ1+θ(|∇2g|)θµ1+θ(|∇g|)1−θ]

when α > 1.
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The key point of the proof

I For simplicity, we assume α < 1 and φz(x) = σ(x+ θyt , z). Rewrite

Dzf(x) := Dy
z f(x) = f(x+ φz(x))− f(x+ φz(0)).

I We can let f̄(x) = f(x + φz(0)). Their Cθ norms are the same. Therefore we
assume that φz(0) = 0 and there is a constant such that |φz(x)| 6 C(|x|∧1)|z|.

I Let Γz(x) = x+ φz(x). By change of variable, we have

〈Dzf, g〉 = 〈f,D∗z g〉,

where

D∗z g(x) = det(∇xΓ−1
z (x))g(Γ−1

z (x))− g(x).

I Noticing that

| det(∇xΓ−1
z (x))− 1| 6 |z|, and |Γ−1

z (x)− x| 6 CC(|x| ∧ 1)|z|,

we complete the proof.
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Lemma 15

Let ε ∈ (0, α ∧ 1) and θ ∈ ((α − 1) ∨ 0, α ∧ 1).For any γ ∈ (0, α − ε), there is a
constant C > 0 such that for all j ∈ N0 and t ∈ (0, T ],

|I j
1 | 6 C2−γj

ˆ t

0
(t− s)−(γ+ε)/α‖u(s)‖Cθds.

I Recall

I j
1 =
ˆ t

0

ˆ
Rd

∆jps,t(−x)L̃ αΘy
t u(s, x)dxds.

Proof.

Let δ = κ
c0

.We only prove the estimate for α ∈ (1, 2). The case α ∈ (0, 1] is similar
and easier.Since the time variable and y does not play any essential role, below we
drop the time variable and Θy

t for simplicity of notations. By definition we can make
the following decomposition:

L̃ αu = Aδu+ Āδu,

where

Aδu(x) =
ˆ
|z|6δ

Dzu(x)ν(dz) and Āδu(x) =
ˆ
|z|>δ

Dzu(x)ν(dz).
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Proof.

I j
1 =
ˆ t

0
〈∆jps,t,Aδu〉ds+

ˆ t

0
〈∆jps,t, Āδu〉ds.

By Lemma14, we have

|〈∆jps,t,Aδu〉| 6 C

ˆ
|z|6δ

|z|1+θν(dz)‖u(s)‖CθB(s, t),

where

B(s, t) =

∣∣∣∣∣
1∑
i=0

µi(|∇i∆jps,t|) + µ1+θ(|∇2∆jps,t|)θµ1+θ(|∇∆jps,t|)1−θ

∣∣∣∣∣ .
Let α < 1 + θ < α+ ε

2 . By crucial lemma, we obtain that

|
ˆ t

0
〈∆jps,t,Aδu〉ds| 6 C

ˆ t

0
‖u(s)‖CθB(s, t)ds

. 2−γj
ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds+ 2−(γ−ε)j

ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds,

whereˆ t

0
µ1+θ(|∇j∆jps,t|)‖u(s)‖Cθds .

ˆ t

0

ˆ
Rd
|x|α−

ε
2 |∇j∆jps,t(x)|‖u(s)‖Cθds,
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Proof.
so
ˆ t

0
µ1+θ(|∇2∆jps,t|)θµ1+θ(|∇∆jps,t|)1−θ‖u(s)‖Cθds

. 2−(α− ε2−1−θ+γ)j
ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds 6 2−γj

ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds.

For Āδu, by Fubini’s theorem and the integration by parts, we have

|〈∆jps,t, Āδu〉| 6
ˆ
|z|>δ

ˆ
Rd
|∆jps,t(x)||u(x+ σ(x, z))− u(x+ σ(0, z))|dxdz

+
ˆ
|z|>δ

ˆ
Rd
|
(

∆jps,t(x)divxσ(x, z) + (σ(x, z)− σ(0, z)) · ∇∆jps,t(x)
)
u(x)|dxdz

6 ‖u(s)‖∞
(
µ0(|∆jps,t|) + µ1(|∇∆jps,t|)

ˆ
|z|>δ

|z|dz
)
.

By crucial lemma again, we obtain that
ˆ t

0
|〈∆jps,t, Āδu〉|ds . 2−γj

ˆ t

0
(t− s)

γ
α ‖u(s)‖∞ds.
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Future works

I We prove that the solution of SDE driven by cylindrical Lévy process has a den-
sity in Sobolev space Hs,r with

s < α− (α− 1) ∨ (1− β) and r <
d

d− α+ s+ β − 1 ,

but this result does not imply that this density is continuous. So how to improve
the index s and how to make r greater are interesting.

I In our work, we only consider the strong Feller property, which only depend on
the distribution of Xx

t . Moreover, the continuous property of σ is enough to
guarantee the existence of weak solution. So how to drop the assumption that σ
is Lipschitz is another interesting question.
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Thanks for your attention!
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