Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

Gradient estimate for SDEs driven by cylindrical Lévy processes

Zimo Hao¹ 郝子墨

Based on a joint work with Zhen-Qing Chen^{2,3} and Xicheng Zhang¹

¹Wuhan University ²University of Washington ³Beijing Institute of Technology

IMS-2019

School of Mathematical Sciences, Dalian University of Technology

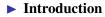
Dalian · July 08, 2019.

Introduction 00000000 Outline Main Results

Sketch of the proof

Future works

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで



Main results

► Proof

► Future works

Part 1 : Introduction

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ ↓ □ ● ○ ○ ○ ○

Main Results

Sketch of the proof

Future works

Motivation

▶ Let $d \ge 2$. Consider the following stochastic differential equation :

$$\begin{cases} dX_t = A(X_t) dB_t + b(X_t) dt, \\ X_0 = x \in \mathbb{R}^d \end{cases}$$
(1.1)

where $B_t = (B_t^1, ..., B_t^d)$ is a *d*-dimensional standard Brownian motion, $b : \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function, and $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ is a $d \times d$ matrix-valued measurable function and satisfies

(H) $A \in C(\mathbb{R}^d)$ and for some $c_0 \ge 0$, it holds that

$$|\det A(x)| \ge c_0, \quad x \in \mathbb{R}^d.$$

▶ Under the above assumptions and b is bounded, it is well known that for each $x \in \mathbb{R}^d$, SDE (1.1) admits a unique weak solution $X_t(x)$ (see [1]). Furthermore, if A and b have more regularity it admits a density $p_t(x, y)$ enjoying the following estimates(see [2]): for any T > 0, there are constants $c_i > 0$ such that for all 0 < t < T and $x, y \in \mathbb{R}^d$

$$c_1 t^{-d/2} e^{-c_2|x-y|^2/t} \leq p_t(x,y) \leq c_3 t^{-d/2} e^{-c_4|x-y|^2/t}$$

 Bass, R.F., Diffusions and Elliptic Operators. Springer-Verlag, New York, 1997
 Z.-Q. Chen, E. Hu, L. Xie, and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps. J. Differential Equations, 263 (2017), 6576-6634.

oduction	Main Results	Sketch of the proof	Future works
000000	000000	000000000000000000000000000000000000000	

- ▶ Notice that B_t^i in $B_t = (B_t^1, ..., B_t^d)$ are i.i.d. 1-dimensional standard Brownian motions.
- ► Naturally, we consider the standard cylindrical α -stable process $L_t = (L_t^1, ..., L_t^d)$ and the following SDE

$$\begin{cases} dX_t = A(X_{t-})dL_t + b(X_t)dt, \\ X_0 = x \in \mathbb{R}^d, \end{cases}$$
(1.2)

where L_t^i are i.i.d. 1-dimensional standard α -stable processes.

> ▶ In fact, L_t admits a density $p_t(x)$ enjoying the following estimates : For any T > 0, there are constants $c_1, c_2 > 0$ such that for all 0 < s < t < Tand $x \in \mathbb{R}^d$

$$c_1 \Pi_{i=1}^d \frac{t}{(\sqrt{t} + |x_i|)^{\alpha+1}} \leq p_t(x) \leq c_2 \Pi_{i=1}^d \frac{t}{(\sqrt{t} + |x_i|)^{\alpha+1}}.$$

▶ However, there is no result for the density estimate for X_t . Actually, the existence of the solution X_t and the density of X_t are still problem.

	Main Results	Sketch of the proof	Fut
C	000000	00000000000000000	

0000000

• More generality, we consider the following SDE driven by the cylindrical α -stable process L_t ,

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) N(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x \in \mathbb{R}^d, \end{cases}$$
(1.3)

ture works

where $\sigma = (\sigma_i)_{i=1}^d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function, and N(dt, dz) is the Poisson random measure of L_t^{α} defined as follow

$$N((s,t],E) := \sum_{s < u \leq t} \mathbf{1}_{(L_u - L_{u-}) \in E}.$$

▶ Define $\nu(E) := \mathbb{E}N([0,1], E)$. For simplify, we assume that for all $x \in \mathbb{R}^d$ and $0 < r < R < +\infty$

$$\int_{r \leq |z| \leq R} \sigma(x, z) \nu(\mathrm{d}z) = 0$$

Main Results	Sketch of the proof	
000000	00000000000000000	

• More generality, we consider the following SDE driven by the cylindrical α -stable process L_t ,

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) N(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x \in \mathbb{R}^d, \end{cases}$$
(1.3)

Future works

where $\sigma = (\sigma_i)_{i=1}^d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function, and N(dt, dz) is the Poisson random measure of L_t^{α} defined as follow

$$N((s,t],E) := \sum_{s < u \leq t} \mathbf{1}_{(L_u - L_{u-}) \in E}.$$

▶ Define $\nu(E) := \mathbb{E}N([0,1], E)$. For simplify, we assume that for all $x \in \mathbb{R}^d$ and $0 < r < R < +\infty$

$$\int_{r \leq |z| \leq R} \sigma(x, z) \nu(\mathrm{d}z) = 0.$$

Questions:

ł

Introduction

00000000

- In what condition of σ and b, there is a weak(or strong) solution of SDE (1.3)?
- ▶ If there is a weak solution, does the solution have a density?
- ► If there is a weak solution, can we get some precise estimates for it?

Introduction Main Results Sketch of the proof 00000000

 \blacktriangleright When L_t is a d-dimensional standard α -stable process, the infinitesimal generator of X_t^x has the following form

$$\mathcal{L}f(x) = \text{p.v.} \int_{\mathbb{R}^d} \frac{f(x + \sigma(x, z)) - f(x)}{|z|^{d+\alpha}} dz$$

= p.v.
$$\int_{\mathbb{R}^d} \frac{f(x + z) - f(x)}{|z|^{d+\alpha}} \kappa(x, z) dz,$$
 (1.4)

where

$$\kappa(x,z) = \frac{|z|^{d+\alpha}}{|\sigma^{-1}(x,z)|^{d+\alpha}} |\det \nabla_z \sigma^{-1}(x,z)|.$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

► When L_t is a *d*-dimensional standard α -stable process, the infinitesimal generator of X_t^x has the following form

$$\mathcal{L}f(x) = \text{p.v.} \int_{\mathbb{R}^d} \frac{f(x + \sigma(x, z)) - f(x)}{|z|^{d + \alpha}} dz$$

= p.v.
$$\int_{\mathbb{R}^d} \frac{f(x + z) - f(x)}{|z|^{d + \alpha}} \kappa(x, z) dz,$$
 (1.4)

where

Introduction

00000000

$$\kappa(x,z) = \frac{|z|^{d+\alpha}}{|\sigma^{-1}(x,z)|^{d+\alpha}} |\det \nabla_z \sigma^{-1}(x,z)|.$$

► When L_t is a *d*-dimensional cylindrical α -stable process, which is our case, the infinitesimal generator of X_t^x has the following form

$$\mathscr{L}f(x) = \sum_{i=1}^{d} \text{p.v.} \int_{\mathbb{R}} \frac{f(x + \sigma(x, ze_i)) - f(x)}{|z|^{1+\alpha}} dz,$$

where $e_i = (0, .., 1(i-th), .., 0)$.

▶ Notice that, it is impossible to find such a κ in (1.4) this time.

Future works

► Let \mathscr{F} be the Fourier transform. The infinitesimal generator of *d*-dimensional cylindrical α -stable process is $\sum_{i=1}^{d} (\partial_i \partial_i)^{\frac{\alpha}{2}}$ with

$$\mathscr{F}(\sum_{i=1}^{d} (\partial_i \partial_i)^{\frac{\alpha}{2}} f)(\xi) = c \sum_{i=1}^{d} |\xi_i|^{\alpha} \mathscr{F}(f)(\xi) := \psi_1(\xi) \mathscr{F}(f)(\xi),$$

where $\psi_1 \in C^{\infty}(\mathbb{R}^d \setminus (\cup_{i=1}^d \mathbb{R}_i))$, where

$$\mathbb{R}_i := \{ x \in \mathbb{R}^d ; x_i = 0 \}.$$

 \blacktriangleright The infinitesimal generator of d-dimensional standard $\alpha\text{-stable process}$ is $\Delta^{\frac{\alpha}{2}}$ with

$$\mathscr{F}(\Delta^{\frac{\alpha}{2}}f)(\xi) = c|\xi|^{\alpha} \mathscr{F}(f)(\xi) := \psi_2(\xi) \mathscr{F}(f)(\xi),$$

where $\psi_2 \in C^{\infty}(\mathbb{R}^d \setminus 0)$.

> Therefore, compared with standard α -stable process, the cylindrical one is more difficult to be dealed with.

▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

Introduction

Introduction	Main Results	Sketch of the proof	Future works
00000000	000000	000000000000000000	
Assumptions			

 $\begin{array}{l} (\mathbf{A}^{\sigma}) \ \ \sigma(x,z) = A(x)z \ \text{for some matrix value map} \ A = (a_{i,j}) : \mathbb{R}^d \rightarrow \mathbb{R}^d \otimes \mathbb{R}^d, \text{ there} \\ \text{ is a positive number} \ c_0 \ \text{such that for any} \ x, y, \xi \in \mathbb{R}^d \ \text{and all} \ i, j = 1, ..., d \end{array}$

$$c_0^{-1}|\xi| \leqslant |\xi \cdot A(x)\xi| \leqslant c_0|\xi|, \tag{1.5}$$

$$|a_{i,j}(x) - a_{i,j}(y)| \leq c_0 |x - y|.$$
(1.6)

Introduction	Main Results	Sketch of the proof	Future works
00000000	000000	000000000000000000	
Assumptions			

(A^{σ}) $\sigma(x,z) = A(x)z$ for some matrix value map $A = (a_{i,j}) : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$, there is a positive number c_0 such that for any $x, y, \xi \in \mathbb{R}^d$ and all i, j = 1, ..., d

$$c_0^{-1}|\xi| \leqslant |\xi \cdot A(x)\xi| \leqslant c_0|\xi|, \tag{1.5}$$

$$|a_{i,j}(x) - a_{i,j}(y)| \leq c_0 |x - y|.$$
(1.6)

▲□▶▲□▶▲□▶▲□▶ □ のQで

 (\mathbf{A}_{β}^{b}) For $\beta \in (0, 1)$,

$$||b||_{C^{\beta}} := \sup_{x \in \mathbb{R}^d} |b(x)| + \sup_{|x-y| \neq 0} \frac{|b(x) - b(y)|}{|x-y|^{\beta}} < \infty.$$
(1.7)

• We always assume that there is a weak solution X_t^x of SDE (1.3) and define

$$P_t^{\sigma,b}\phi(x) = \mathbb{E}(\phi(X_t^x)), \qquad P_t^{\sigma} := P_t^{\sigma,0}.$$

Introduction	Main Results	Sketch of the proof	Future works
00000000	000000	000000000000000000	
Well-known result	S		

There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	Main Results 000000	Sketch of the proof	Future works
Well-known results			

There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$. For any bounded domain $D \subset \mathbb{R}^d$, define $\tau_D := \inf\{t > 0, X_t^x \notin D\}$. If any bounded function h satisfies

$$h(x) = \mathbb{E}[h(X_{\tau_D}^x)]$$
 for every $x \in D$,

▲□▶▲□▶▲□▶▲□▶ □ のQ@

then h is Hölder continuous in D.

Introduction	Main Results 000000	Sketch of the proof	Future works
Well-known results			

There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$. For any bounded domain $D \subset \mathbb{R}^d$, define $\tau_D := \inf\{t > 0, X_t^x \notin D\}$. If any bounded function h satisfies

$$h(x) = \mathbb{E}[h(X_{\tau_D}^x)]$$
 for every $x \in D$,

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

then h is Hölder continuous in D.

2012 (Debussche-Fournier)

Introduction	Main Results 000000	Sketch of the proof 00000000000000000000000000000000000	Future works
Well-known results			

There is a weak solution X_t^x of (1.3) when $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$.

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable x and $b \equiv 0$. For any bounded domain $D \subset \mathbb{R}^d$, define $\tau_D := \inf\{t > 0, X_t^x \notin D\}$. If any bounded function h satisfies

$$h(x) = \mathbb{E}[h(X_{\tau_D}^x)] \text{ for every } x \in D,$$

then h is Hölder continuous in D.

2012 (Debussche-Fournier)

2017 (Chen-Zhang-Zhao) Under the condition (\mathbf{A}^{σ}) and (\mathbf{A}^{b}_{β}) with $\beta \in (1 - \frac{\alpha}{2}, 1)$, there is a unique strong solution of (1.3).

Introduction	Main Results	Sketch of the proof	Future works
0000000	000000	0000000000000000	

2018 (Kulczycki-Ryznar-Sztonyk)

Assume $b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process with $\alpha \in (0, 1)$. Under the condition (\mathbf{A}^{σ}) , for any $\gamma \in (0, \alpha)$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x, y \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d)$

$$|P_t^{\sigma}f(x) - P_t^{\sigma}f(y)| \leq C|x - y|^{\gamma}t^{-\frac{\gamma}{\alpha}}||f||_{L^{\infty}}.$$
(1.8)

For any $\gamma \in (0, \frac{\alpha}{d})$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$

$$|P_t^{\sigma}f(x)| \leqslant Ct^{-\frac{\gamma d}{\alpha}} \|f\|_{L^{\infty}}^{1-\gamma} \|f\|_{L^1}^{\gamma}.$$
(1.9)

Introduction	Main Results	Sketch of the proof	Future works
0000000	000000	0000000000000000	

2018 (Kulczycki-Ryznar-Sztonyk)

Assume $b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process with $\alpha \in (0, 1)$. Under the condition (\mathbf{A}^{σ}), for any $\gamma \in (0, \alpha)$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x, y \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d)$

$$|P_t^{\sigma}f(x) - P_t^{\sigma}f(y)| \leq C|x - y|^{\gamma}t^{-\frac{\gamma}{\alpha}}||f||_{L^{\infty}}.$$
(1.8)

For any $\gamma \in (0, \frac{\alpha}{d})$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$

$$|P_t^{\sigma} f(x)| \leqslant C t^{-\frac{\gamma d}{\alpha}} \|f\|_{L^{\infty}}^{1-\gamma} \|f\|_{L^1}^{\gamma}.$$
(1.9)

Notice that they can **not** deal the case $\alpha \in [1, 2)$.

 $\blacktriangleright \text{ Hölder index } \gamma \text{ can$ **not** $be 1.}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Part 2: Our main results

Main Results

Sketch of the proof

Future works

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Littlewood-Paley decomposition and Besov space

▶ Notice that $\{\phi_j\}_{j \in \mathbb{N}_0}$ is a partition of unity of

$$\mathbb{R}^{d} = B_{2} \cup \left(\cup_{j \in \mathbb{N}} \left(B_{2^{j+1}} \setminus B_{2^{j-1}} \right) \right).$$

Introduction	Main Results	Sketch of the proof	Future works
0000000	00000	000000000000000000	

▶ For given $j \in \mathbb{N}_0$, the block operator Δ_j is defined on \mathscr{S}' by

$$\begin{aligned} \Delta_j f(x) &:= \mathscr{F}^{-1}(\phi_j \mathscr{F}(f))(x) = \mathscr{F}^{-1}(\phi_j) * f(x) \\ &= 2^{\cdot m(j-1)} \int_{\mathbb{R}^d} \mathscr{F}^{-1}(\phi_1) (2^{(j-1)}(x-y)) f(y) \mathrm{d}y. \end{aligned}$$

For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j = \Delta_j \widetilde{\Delta}_j, \text{ where } \widetilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1} \text{ with } \Delta_{-1} \equiv 0, \quad (2.1)$$

and Δ_j is symmetric in the sense that

$$\langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.$$

 \blacktriangleright The cut-off low frequency operator S_k is defined by

$$S_k f := \sum_{j=0}^{k-1} \Delta_j f = 2^{dk} \int_{\mathbb{R}^d} \check{\phi}_0(2^k(x-y)) f(y) \mathrm{d}y \to f.$$
(2.2)

- コン・4回ン・4回ン・4回ン・4回ン・4日ン

▶ We rewrite (2.2) as

$$f = \sum_{j=0}^{\infty} \Delta_j f,$$

which is called the Littlewood-Paley decomposition.

Introduction	Main Results	Sketch of the proof	Future works
0000000	00000	0000000000000000	

Definition 1 (Besov space)

For any $s \in \mathbb{R}$ and $p \in [1, \infty]$, the Besov space $B_{p,\infty}^s$ is defined by

$$B_{p,\infty}^s(\mathbb{R}^d) := \bigg\{ f \in \mathscr{S}'(\mathbb{R}^d) : \|f\|_{B_{p,\infty}^s} := \sup_{j \ge 0} \left(2^{sj} \|\Delta_j f\|_{L^p} \right) < \infty \bigg\}.$$

Proposition 2

For any $s_1 \ge 0$ and $s_2 > 0$ with $s_2 \notin \mathbb{N}$,

$$H^{s_1,p}(\mathbb{R}^d) \subset B^{s_1}_{p,\infty}(\mathbb{R}^d) \quad and \quad C^{s_2}(\mathbb{R}^d) = B^{s_2}_{\infty,\infty}(\mathbb{R}^d),$$

where $H^{s_1,p}(\mathbb{R}^d)$ and $C^{s_2}(\mathbb{R}^d)$ are the common Sobolev space and Hölder space respectively. For any $n \in \mathbb{N}$,

$$C^{n}(\mathbb{R}^{d}) \subset B^{n}_{\infty,\infty}(\mathbb{R}^{d}).$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Main Results	Sketch of the proof	Future works
0000000	00000	0000000000000000	

Definition 1 (Besov space)

For any $s \in \mathbb{R}$ and $p \in [1, \infty]$, the Besov space $B_{p,\infty}^s$ is defined by

$$B_{p,\infty}^s(\mathbb{R}^d) := \bigg\{ f \in \mathscr{S}'(\mathbb{R}^d) : \|f\|_{B_{p,\infty}^s} := \sup_{j \ge 0} \left(2^{sj} \|\Delta_j f\|_{L^p} \right) < \infty \bigg\}.$$

Proposition 2

For any $s_1 \ge 0$ and $s_2 > 0$ with $s_2 \notin \mathbb{N}$,

$$H^{s_1,p}(\mathbb{R}^d) \subset B^{s_1}_{p,\infty}(\mathbb{R}^d) \quad and \quad C^{s_2}(\mathbb{R}^d) = B^{s_2}_{\infty,\infty}(\mathbb{R}^d),$$

where $H^{s_1,p}(\mathbb{R}^d)$ and $C^{s_2}(\mathbb{R}^d)$ are the common Sobolev space and Hölder space respectively. For any $n \in \mathbb{N}$,

$$C^{n}(\mathbb{R}^{d}) \subset B^{n}_{\infty,\infty}(\mathbb{R}^{d}).$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Future works

Our assumption for σ

 $(\mathbf{H}^{\sigma}_{\mu})$ There is a constant $c_0 > 1$ such that for all $x, y, z \in \mathbb{R}^d$ and all $\lambda > 0$

$$\inf_{\omega \in \mathbb{S}^{d-1}} \inf_{\lambda > 0} \lambda \sum_{i=1}^{d} |\omega \cdot \sigma(x, \frac{e_i}{\lambda})| \ge c_0^{-1},$$
(2.3)

$$|\sigma(x,z) - \sigma(y,z)| \leq c_0 |x-y||z|$$

$$c_0^{-1}|z| \leq |\sigma(x,z)| \leq c_0|z|.$$

Remark 3

• Notice that condition H_s^{σ} implies condition H_{μ}^{σ} here.

• $\sigma(x,z) = (2 + sinz_1)z$ satisfies condition H^{σ}_{μ} but not satisfies condition H^{σ}_s .

▲□▶▲□▶▲□▶▲□▶ □ ● ● ● ●

In	tr	oć	lu	ct	io	n	
0	0	0	0	0	0	0	0

Main Results

Sketch of the proof

Future works

Main Results

Theorem 4

Let $\alpha \in (0, 2)$ and $\beta \in [0, 1]$ with $\alpha + \beta > 1$. Assume (\mathbf{H}^{σ}) , $\|\nabla \sigma\|_{\infty} \leq c_1$ for some $c_1 > 0$, and one of the following conditions holds:

(i) $b = 0, \ \beta = 1$; (ii) $\alpha \in (\frac{1}{2}, 2)$ and $b \in L^{\infty}(\mathbb{R}_+; \mathbb{C}^{\beta})$.

Let $X_{s,t}(x)$ be the unique solution of SDE (??) and define

$$P_{s,t}\varphi(x) := \mathbb{E}\varphi(X_{s,t}(x)).$$

Let $\gamma \in [0, \alpha + \alpha \land \beta)$ and $\eta \in (-((\alpha + \beta - 1) \land 1), \gamma]$. For any T > 0, there exists a constant C > 0 such that for all $0 \leq s < t \leq T$,

$$\|P_{s,t}\varphi\|_{\mathbf{B}^{\gamma}_{\infty,\infty}} \leqslant C(t-s)^{\frac{\eta-\gamma}{\alpha}} \|\varphi\|_{\mathbf{B}^{\eta}_{\infty,\infty}}.$$
(2.4)

- ▶ Notice that (2.4) reduced the restriction of the γ in (1.8) from $(0, \alpha)$ to $(0, \alpha + \alpha \land \beta)$ by taking $\eta = 0$. In particular, we have gradient estimate. Moreover, we can deal with the case $\alpha \ge 1$.
- ▶ By a way of interpolation, we also get (1.9).

Introduction	Main Results	Sketch of the proo
0000000	00000	00000000

Main Results

Corollary 5

(A) Let $\varphi \in \bigcup_{\eta < (\alpha + \beta - 1) \land 1} \mathbf{B}_{\infty,\infty}^{-\eta}$. For any $0 \leq s < t$, $P_{s,t}\varphi \in \bigcap_{\gamma < \alpha + \alpha \land \beta} \mathbf{B}_{\infty,\infty}^{\gamma}$ solves the following backward Kolmogorov equation: for all $x \in \mathbb{R}^d$,

$$P_{t_0,t}\varphi(x) = P_{t_1,t}\varphi(x) + \int_{t_0}^{t_1} \mathscr{L}_s^{\sigma,b} P_{s,t}\varphi(x) \mathrm{d}s, \ 0 \le t_0 < t_1 < t.$$
(2.5)

(B) For $\alpha \in (\frac{1}{2}, 2)$, the following gradient estimate holds: for $0 \leq s < t \leq T$,

$$\|\nabla P_{s,t}\varphi\|_{\infty} \leqslant C(t-s)^{-\frac{1}{\alpha}} \|\varphi\|_{\infty}.$$
(2.6)

(C) For each s < t, the random variable $X_{s,t}(x)$ admits a density $p_{s,t}(x, \cdot)$ with

$$p_{s,t}(x,\cdot) \in \bigcap_{\eta < (\alpha+\beta-1)\wedge 1} \mathbf{B}^{\eta}_{1,1}.$$
(2.7)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Main Results
0000000	000000

Sketch of the proof

Main Results

Corollary 5

(A) Let $\varphi \in \bigcup_{\eta < (\alpha+\beta-1)\wedge 1} \mathbf{B}_{\infty,\infty}^{-\eta}$. For any $0 \leq s < t$, $P_{s,t}\varphi \in \bigcap_{\gamma < \alpha+\alpha\wedge\beta} \mathbf{B}_{\infty,\infty}^{\gamma}$ solves the following backward Kolmogorov equation: for all $x \in \mathbb{R}^d$,

$$P_{t_0,t}\varphi(x) = P_{t_1,t}\varphi(x) + \int_{t_0}^{t_1} \mathscr{L}_s^{\sigma,b} P_{s,t}\varphi(x) \mathrm{d}s, \ 0 \le t_0 < t_1 < t.$$
(2.5)

(B) For $\alpha \in (\frac{1}{2}, 2)$, the following gradient estimate holds: for $0 \leq s < t \leq T$,

$$\|\nabla P_{s,t}\varphi\|_{\infty} \leqslant C(t-s)^{-\frac{1}{\alpha}} \|\varphi\|_{\infty}.$$
(2.6)

(C) For each s < t, the random variable $X_{s,t}(x)$ admits a density $p_{s,t}(x, \cdot)$ with

$$p_{s,t}(x,\cdot) \in \bigcap_{\eta < (\alpha+\beta-1)\wedge 1} \mathbf{B}^{\eta}_{1,1}.$$
(2.7)

(日)

- ▶ Notice that (??) reduced the restriction of the γ in (1.8) from $(0, \alpha)$ to $(0, \alpha + \alpha \land \beta)$. In particular, we have gradient estimate. Moreover, we can deal with the case $\alpha \ge 1$.
- ▶ By a way of interpolation, we also get (1.9) from Theorem??.

Main Results

Sketch of the proof

Future works

Part 3: Proof

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

Main Results

 Future works

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

PDE related to SDE

▶ Naturally we consider the following PDE,

$$\begin{cases} \partial_t u(t,x) = \mathscr{L}^{\alpha}_{\sigma} u(t,x) + b(x) \cdot \nabla u(t,x), \\ u(0,x) = \phi(x), \end{cases}$$
(3.1)

where $\phi \in C^\infty(\mathbb{R}^d)$ and

$$\mathscr{L}^{\alpha}_{\sigma}u(t,x) = \sum_{i=1}^{d} \text{p.v.} \int_{\mathbb{R}} \Big(u(t,x+\sigma(x,z)) - u(t,x) \Big) \nu(\mathrm{d} z) dz$$

Main Results

 Future works

PDE related to SDE

▶ Naturally we consider the following PDE,

$$\begin{cases} \partial_t u(t,x) = \mathscr{L}^{\alpha}_{\sigma} u(t,x) + b(x) \cdot \nabla u(t,x), \\ u(0,x) = \phi(x), \end{cases}$$
(3.1)

where $\phi \in C^\infty(\mathbb{R}^d)$ and

$$\mathscr{L}^{\alpha}_{\sigma}u(t,x) = \sum_{i=1}^{d} \mathrm{p.v.} \int_{\mathbb{R}} \Big(u(t,x+\sigma(x,z)) - u(t,x) \Big) \nu(\mathrm{d}z)$$

Definition 6

We call a function $u(t, x) \in L^{\infty}_{loc}([0, +\infty); C^{\alpha+\varepsilon}(\mathbb{R}^d) \cap C^{1+\varepsilon}(\mathbb{R}^d))$ for some $\varepsilon > 0$ be a classical solution of PDE (3.1) in [0, T] if $u, \nabla u \in C_{loc}([0, \infty) \times \mathbb{R}^d)$ and for all $t \in [0, \infty)$ and $x \in \mathbb{R}^d$

$$u(t,x) = \int_0^t \mathscr{L}_{\sigma}^{\alpha} u(s,x) + b(x) \cdot \nabla u(s,x) \mathrm{d}s + \phi(x)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction	Main Results	Sketch of the proof	Future w
0000000	000000	000000000000000000000000000000000000000	

- ► Is there a classical solution of PDE (3.1)?
 - ► Fortunately, we have a priori estimate: under the condition $(\mathbf{H}^{\sigma}_{\mu})$ and (\mathbf{H}^{b}_{β}) with $\beta \in ((1 \alpha) \lor 0, \alpha)$, for any T > 0 and $\varepsilon \in (0, \beta \land \alpha)$, there is a constant C such that for all $t \in [0, T]$, $\phi \in C^{\infty}$ and classical solutions u

$$\|u(t)\|_{C^{\alpha+\varepsilon}} \leqslant C \|\phi\|_{C^{\alpha+\varepsilon}}.$$
(3.2)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ のへで

works

By (3.2) some continuity methods and vanishing viscosity approach, we obtain the existence of the classical solution.

Introduction		Sketch of the proof	Future works
0000000	000000	000000000000000000000000000000000000000	

- ► Is there a classical solution of PDE (3.1)?
 - Fortunately, we have a priori estimate: under the condition (H^σ_μ) and (H^b_β) with β ∈ ((1 − α) ∨ 0, α), for any T > 0 and ε ∈ (0, β ∧ α), there is a constant C such that for all t ∈ [0, T], φ ∈ C[∞] and classical solutions u

$$\|u(t)\|_{C^{\alpha+\varepsilon}} \leqslant C \|\phi\|_{C^{\alpha+\varepsilon}}.$$
(3.2)

- By (3.2) some continuity methods and vanishing viscosity approach, we obtain the existence of the classical solution.
- ▶ Let u be a classical solution. By Itô formula, $s \to u(t s, X_s^x)$ is a martingale for $s \in [0, t]$. Then

$$P_t^{\sigma,b}\phi(x) = \mathbb{E}(\phi(X_t^x)) = \mathbb{E}(u(t-s,X_s^x)) = \mathbb{E}(u(t,x)) = u(t,x).$$

- ► The equality above tell us that if we want to establish any estimate of $P_t^{\sigma,b}\phi(x)$, it is enough to establish the estimate of classical solution u.
- Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equivalent to the uniqueness of classical solution of PDE (3.1).

Introduction	Main Results	Sketch of the proof	Future works
0000000	000000	000000000000000000000000000000000000000	
Crucial lemma			

► Let θ : $\mathbb{R}_+ \to \mathbb{R}^d$ is a measurable function and $p_{s,t}$ be the transition probability of process

$$Z_{s,t} := \int_s^t \int_{\mathbb{R}^d} \sigma(\theta(r), z) \tilde{N}(dz, dr).$$

Lemma 7 (Crucial Lemma)

For any β ∈ [0, α), γ ∈ [0, +∞) and T > 0, there is a constants C such that for m ∈ N₀ all j > 0, f ∈ L¹_{loc}(R₊) and t ∈ (0, T] s ∈ [0, t),
∫^t₀ ∫_{R^d} |x|^β|∇^mΔ_jp_{s,t}(x)||f(s)|dxds ≤ C2^{(m-γ-β)j} ∫₀^t (t - s)^{- ^x/_α} |f(s)|ds.
For any m ∈ N₀, q ∈ [1,∞], ¹/_p + ¹/_q = 1 and γ ∈ [0,+∞), there is a constant C such that for all (t - s) ∈ (0, T],
||∇^mΔ_jp_{s,t}||_{L^q(R^d)} ≤ C(t - s)<sup>- ¹/_α(γ-m+^d/_p)2^{-γj}.
</sup>

・

Main Results

Sketch of the proof

Future works

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_{s}^{t} a(r) \mathrm{d}L_{t}^{\alpha} \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^{\alpha} \stackrel{(d)}{=} L_{t}^{\alpha}.$$

Therefore using the change of variable and the scaling property, we have

$$\int_{s}^{t} a(r) \mathrm{d}L_{r}^{\alpha} = \int_{0}^{t-s} a(r+s) \mathrm{d}\left(L_{r+s}^{\alpha} - L_{s}^{\alpha}\right)$$
$$\stackrel{(d)}{=} (t-s)^{-\frac{1}{\alpha}} \int_{0}^{1} a(r(t-s)+s) \mathrm{d}L_{r}^{\alpha}.$$

We denote by $\bar{p}_{0,1}$ the density of $\int_0^1 a(r(t-s)+s) dL_r^{\alpha}$, then

$$p_{s,t}(x) = (t-s)^{-\frac{d}{\alpha}} \bar{p}_{0,1}((t-s)^{-\frac{1}{\alpha}} x).$$

Main Results

Sketch of the proof

Future works

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_s^t a(r) \mathrm{d}L_t^\alpha \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^\alpha \stackrel{(d)}{=} L_t^\alpha.$$

Therefore using the change of variable and the scaling property, we have

$$\int_{s}^{t} a(r) \mathrm{d}L_{r}^{\alpha} = \int_{0}^{t-s} a(r+s) \mathrm{d}\left(L_{r+s}^{\alpha} - L_{s}^{\alpha}\right)$$
$$\stackrel{(d)}{=} (t-s)^{-\frac{1}{\alpha}} \int_{0}^{1} a(r(t-s)+s) \mathrm{d}L_{r}^{\alpha}.$$

We denote by $\bar{p}_{0,1}$ the density of $\int_0^1 a(r(t-s)+s) dL_r^{\alpha}$, then

$$p_{s,t}(x) = (t-s)^{-\frac{d}{\alpha}} \bar{p}_{0,1}((t-s)^{-\frac{1}{\alpha}} x).$$

Condition

$$\inf_{\omega \in \mathbb{S}^{d-1}} \inf_{\lambda > 0} \lambda \sum_{i=1}^{d} |\omega \cdot \sigma(x, \frac{e_i}{\lambda})| \ge c_0^{-1},$$
(3.3)

guarantee that for any $n \in \mathbb{N}_0$ and $\beta \in [0, \alpha)$, there is a constant C such that

$$\int_{\mathbb{R}^d} |x|^{\beta} |\nabla^n \bar{p}_{0,1}(x)| \mathrm{d} x \leqslant C_{\underline{\cdot}} + \beta + \epsilon = 1$$

Firstly, we use a technology of translate alone the characteristic line θ_t and get a new equation:

$$\begin{cases} \partial_t \tilde{u}(t,x) = \mathscr{L}^{\alpha}_{\tilde{\sigma}} \tilde{u}(t,x) + \tilde{b}(x) \cdot \nabla \tilde{u}(t,x), \\ u(0,x) = \phi(x), \end{cases}$$
(3.4)

where $\tilde{u}(t, x) = u(t, x + \theta_t)$ and $\tilde{b}(x) = b(x + \theta_t) - b(\theta_t)$. Notice that $|\tilde{b}(x)| \leq |x|^{\beta}$ which releases the regularity of spatial x.

▶ Then we have the following presentation

$$\tilde{u}(t,x) = \int_{0}^{t} P_{s,t} \left(\mathscr{L}^{\alpha}_{\tilde{\sigma}} - \mathscr{L}^{\alpha}_{\tilde{\sigma}_{0}} \right) \tilde{u}(s,x) \mathrm{d}s + \int_{0}^{t} P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s,x) \mathrm{d}s \quad (3.5)$$
$$+ P_{0,t} \phi(x), \qquad (3.6)$$

where $\mathscr{L}^{\alpha}_{\sigma_0}$ is a infinitesimal generator of some process introduced in the crucial lemma.

Introduction 00000000	Sketch of the proof	Future works

Ir

▶ Next step is a highlight point. We operator the block operator Δ_j on both sides and only look at the point zero:

$$\Delta_{j}\tilde{u}(t,0) = \int_{0}^{t} \Delta_{j} P_{s,t} \left(\mathscr{L}_{\tilde{\sigma}}^{\alpha} - \mathscr{L}_{\tilde{\sigma}_{0}}^{\alpha} \right) \tilde{u}(s,0) \mathrm{d}s + \int_{0}^{t} \Delta_{j} P_{s,t} (\tilde{b} \cdot \nabla \tilde{u})(s,0) \mathrm{d}s + \Delta_{j} P_{0,t} \phi(0).$$

Notice that Δ_ju(t, θ_t) = Δ_jũ(t, 0). We take the supremum of the initial point of the θ_t and get the estimate of ||Δ_ju(t)||_∞. Then by taking sipremum of j, we have for some ϑ > −1 and any γ₁ ∈ [0, α):

$$\|u(t)\|_{B^{\gamma_1}_{\infty,\infty}} \lesssim \int_0^t (t-s)^\vartheta \|u(s)\|_{B^{\gamma_1}_{\infty,\infty}} \mathrm{d}s + t^{-\frac{1}{\alpha}\left(\frac{d}{p}-\gamma_2+\gamma_1\right)} \|\phi\|_{B^{\gamma_2}_{p,\infty}}.$$

▶ Notice that a highlight point here is that we turn the convolution $P_{s,t}f$ into an inner product $\langle p_{s,t}, f \rangle$. Therefore, we use our crucial lemma and get the regularity of the space.

- コン・4回シュービン・4回シューレー

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)

Assume A > 0. For any $\theta, \vartheta > -1$ and T > 0, there exists a constant $C = C(A, \theta, \vartheta, T) \ge 0$ such that if locally integrable functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy

$$f(t) \leqslant A \int_0^t (t-s)^\theta f(s) \mathrm{d}s + At^\vartheta, \quad t \in (0,T],$$

then

$$f(t) \leqslant Ct^{\vartheta}, \quad t \in (0,T].$$

- When ^d/_p − γ₂ + γ₁ < α, t^{-1/α}(^d/_p−γ₂+γ₁) is a local integral function on [0, T]. We obtain main result for γ₁ ∈ [0, α) and ^d/_p − γ₂ < α − γ₁.
- ► To lift the limitation of γ_1 from $[0, \alpha)$ to $[0, \alpha + \alpha \land 1)$, we need a lift theorem by the semigroup property of Feller process.
- ▶ The proof can be found in [1].

[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. *J.Funct. Anal.*, 258 (2010), 1361-1425.

Introduction 00000000	Main Results	Sketch of the proof	Future worl
Lift lemma			

Lemma 9

Assume one of the following conditions holds,

 $\blacktriangleright \ \alpha \in (0,2), b \equiv 0 \text{ and let } \beta = 1.$

• $\alpha \in (\frac{1}{2}, 2)$ and condition (\mathbf{H}^b_β) holds with $\beta \in ((1 - \alpha) \lor 0, \alpha \land 1)$.

Under condition $(\mathbf{H}^{\sigma}_{\mu})$, for any

 $\gamma \in (\alpha, \alpha + \alpha \wedge \beta), \quad \delta \in [0, \alpha),$

there is a constant C_T such that for all $\phi \in C_0^{\infty}(\mathbb{R}^d)$ and all $t \in (0, T]$,

$$\|P_t^{\sigma,b}\phi\|_{B^{\gamma}_{\infty,\infty}} \leqslant C_T t^{-\frac{\delta}{\alpha}} \|\phi\|_{B^{\gamma-\delta}_{p,\infty}}.$$
(3.7)

▶ Notice that $P_t^{\sigma,b}\phi = P_{\frac{t}{2}}^{\sigma,b}P_{\frac{t}{2}}^{\sigma,b}\phi$ and $(\alpha, \alpha + \alpha \land \beta) - \alpha \subset (0, \alpha)$, by this C-K property, we obtain the main result.

▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

Introduction	Main Results	Sketch of the proof	Future works
0000000	000000	000000000000000000000000000000000000000	
Characteristic line			

► Let θ_t^y be a solution of following ODE

 $\begin{cases} \mathrm{d} \theta^y_t = -b(\theta^y_t), \\ \theta^y_0 = y, \end{cases}$

for $t \in [0, T]$ and $y \in \mathbb{R}^d$.

Remark 10

Under the condition \mathbf{H}_{β}^{b} , there is a constant C such that for any $|x - y| \ge 1$,

$$|b(x) - b(y)| \le C|x - y|,$$

which implies that θ_t^y would never blow up. See Wang-Zhang^[1].

[1] Degenerate SDE with Hölder-Dini drift and non-Lipschitz coefficient. SIAM J. Math. Anal. 48 (2016), 2189-2226.

roduction	
000000	

Main Results

Sketch of the proof

Future works

Perturbation

Inti

▶ Define $\Theta_t^y g(x) := g(x + \theta_t^y)$. Then $\Theta_t^y u$ satisfies a new PDE

$$\begin{cases} \partial_t \Theta_t^y u(t,x) = \mathscr{L}_0^\alpha \Theta_t^y u(t,x) + \tilde{\mathscr{L}}^\alpha \Theta_t^y u(t,x) + \tilde{b}(x) \cdot \nabla \Theta_t^y u(t,x), \\ \Theta_t^y u(0,x) = \phi(x+y), \end{cases}$$

(3.8)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

In	tr	od	lu	ct	io	n	
0	0	0	0	0	0	0	0

Main Results

Sketch of the proof

Future works

Perturbation

▶ Define $\Theta_t^y g(x) := g(x + \theta_t^y)$. Then $\Theta_t^y u$ satisfies a new PDE

$$\begin{cases} \partial_t \Theta_t^y u(t,x) = \mathscr{L}_0^\alpha \Theta_t^y u(t,x) + \tilde{\mathscr{L}}^\alpha \Theta_t^y u(t,x) + \tilde{b}(x) \cdot \nabla \Theta_t^y u(t,x), \\ \Theta_t^y u(0,x) = \phi(x+y), \end{cases}$$
(3.8)

• where
$$\tilde{b}(x) = \Theta_t^y b(x) - \Theta_t^y b(0)$$
,

$$\begin{split} \mathscr{L}_{0}^{\alpha}g(x) &= \int_{\mathbb{R}^{d}} \left(g(x + \sigma(\theta_{t}^{y}, z)) - g(x) - \mathbb{1}_{\alpha \geqslant 1}\sigma(\theta_{t}^{y}, z) \cdot \nabla g(x) \right) \nu(\mathrm{d}z), \\ \tilde{\mathscr{L}}^{\alpha}g(x) &= \int_{\mathbb{R}^{d}} \mathscr{D}_{z}^{y}g(x)\nu(\mathrm{d}z) \\ &:= \int_{\mathbb{R}^{d}} \left(g(x + \sigma(x + \theta_{t}^{y}, z)) - g(x + \sigma(\theta_{t}^{y}, z)) - \mathbb{1}_{\alpha \geqslant 1}\tilde{\sigma}(x, z) \cdot \nabla g(x) \right) \nu(\mathrm{d}z), \end{split}$$

with $\tilde{\sigma}(x, z) = \sigma(x + \theta_t^y, z) - \sigma(\theta_t^y, z).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ●

In	tro	du	ctio	n
0	00	oc	00	00

Main Results

Sketch of the proof

Future works

Perturbation

▶ Define $\Theta_t^y g(x) := g(x + \theta_t^y)$. Then $\Theta_t^y u$ satisfies a new PDE

$$\begin{cases} \partial_t \Theta_t^y u(t,x) = \mathscr{L}_0^\alpha \Theta_t^y u(t,x) + \tilde{\mathscr{L}}^\alpha \Theta_t^y u(t,x) + \tilde{b}(x) \cdot \nabla \Theta_t^y u(t,x), \\ \Theta_t^y u(0,x) = \phi(x+y), \end{cases}$$
(3.8)

• where
$$\tilde{b}(x) = \Theta_t^y b(x) - \Theta_t^y b(0)$$
,

$$\begin{split} \mathscr{L}_{0}^{\alpha}g(x) &= \int_{\mathbb{R}^{d}} \left(g(x + \sigma(\theta_{t}^{y}, z)) - g(x) - \mathbb{1}_{\alpha \geqslant 1}\sigma(\theta_{t}^{y}, z) \cdot \nabla g(x) \right) \nu(\mathrm{d}z), \\ \tilde{\mathscr{L}}^{\alpha}g(x) &= \int_{\mathbb{R}^{d}} \mathscr{D}_{z}^{y}g(x)\nu(\mathrm{d}z) \\ &:= \int_{\mathbb{R}^{d}} \left(g(x + \sigma(x + \theta_{t}^{y}, z)) - g(x + \sigma(\theta_{t}^{y}, z)) - \mathbb{1}_{\alpha \geqslant 1}\tilde{\sigma}(x, z) \cdot \nabla g(x) \right) \nu(\mathrm{d}z), \end{split}$$

with $\tilde{\sigma}(x, z) = \sigma(x + \theta_t^y, z) - \sigma(\theta_t^y, z).$

▶ Notice that there is a constant C such that $|\tilde{b}(x)| \leq C|x|^{\beta} \wedge |x|$ and

 $\tilde{\sigma}(0,z) = 0, \quad |\tilde{\sigma}(x,z)| \leq c_0 |x||z|, \quad |\nabla_x \tilde{\sigma}(x,z)| \leq c_0 |z|.$

Main Results	Sketch of the proof
000000	000000000000000000000000000000000000000

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

$$L^0_{s,t} = \int_s^t \int_{\mathbb{R}^d} \sigma(\theta^y_r, z) \tilde{N}(\mathrm{d} r, \mathrm{d} z).$$

Main Results	Sketch of the proof
000000	000000000000000000000000000000000000000

Future works

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲ 圖 - 釣ぬ⊙

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

Introduction

$$L^0_{s,t} = \int_s^t \int_{\mathbb{R}^d} \sigma(\theta^y_r, z) \tilde{N}(\mathrm{d} r, \mathrm{d} z).$$

Since the constant c_0 in condition $\mathbf{H}^{\sigma}_{\mu}$ is independent with x and z, we drop the coefficient y and denote $\sigma(r, z) := \sigma(\theta^y_r, z)$.

lts	Sketch of the proof
)	000000000000000000000000000000000000000

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

$$L^0_{s,t} = \int_s^t \int_{\mathbb{R}^d} \sigma(\theta^y_r, z) \tilde{N}(\mathrm{d} r, \mathrm{d} z).$$

- Since the constant c_0 in condition $\mathbf{H}^{\sigma}_{\mu}$ is independent with x and z, we drop the coefficient y and denote $\sigma(r, z) := \sigma(\theta_r^y, z)$.
- ▶ We denote by $p_{s,t}(x)$ the transition probability of $L_{s,t}^0$, then crucial lemma is available for $p_{s,t}$. By the Duhamel's formula,

$$\begin{split} \Theta_t^y u(t,w) &= \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{\mathscr{Z}}^{\alpha} \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{b}(x) \cdot \nabla \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_{\mathbb{R}^d} p_{0,t}(w-x) \phi(x+y) \mathrm{d}x. \end{split}$$

Future works

- ・ロト・日本・モト・モー・ ヨー めんぐ

Main Resu

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

$$L^0_{s,t} = \int_s^t \int_{\mathbb{R}^d} \sigma(\theta^y_r, z) \tilde{N}(\mathrm{d} r, \mathrm{d} z).$$

- Since the constant c_0 in condition $\mathbf{H}^{\sigma}_{\mu}$ is independent with x and z, we drop the coefficient y and denote $\sigma(r, z) := \sigma(\theta^y, z)$.
- ▶ We denote by $p_{s,t}(x)$ the transition probability of $L_{s,t}^0$, then crucial lemma is available for $p_{s,t}$. By the Duhamel's formula,

$$\begin{split} \Theta_t^y u(t,w) &= \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{\mathscr{Z}}^\alpha \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{b}(x) \cdot \nabla \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_{\mathbb{R}^d} p_{0,t}(w-x) \phi(x+y) \mathrm{d}x. \end{split}$$

• We operate the block operator Δ_j on both sides and let w = 0,

$$\begin{split} \Delta_{j}u(t,\theta_{t}^{y}) &= \Delta_{j}\Theta_{t}^{y}u(t,0) = \int_{0}^{t}\int_{\mathbb{R}^{d}}\Delta_{j}p_{s,t}(-x)\tilde{\mathscr{L}}^{\alpha}\Theta_{t}^{y}u(s,x)\mathrm{d}x\mathrm{d}s \\ &+ \int_{0}^{t}\int_{\mathbb{R}^{d}}\Delta_{j}p_{s,t}(-x)\tilde{b}(x)\cdot\nabla\Theta_{t}^{y}u(s,x)\mathrm{d}x\mathrm{d}s + \int_{\mathbb{R}^{d}}\Delta_{j}p_{0,t}(-x)\phi(x+y)\mathrm{d}x, \\ &:= \mathscr{I}_{1}^{j} + \mathscr{I}_{2}^{j} + \mathscr{I}_{3}^{j}. \end{split}$$

•
$$(\tilde{\Delta}_j \Delta_j = \Delta_j \text{ and } \Delta_j \text{ is symmetric}) \Rightarrow$$

$$\mathscr{I}_{3}^{j} = \int_{\mathbb{R}^{d}} \Delta_{j} p_{0,t}(-x) \phi(x+y) dx = \int_{\mathbb{R}^{d}} \Delta_{j} p_{0,t}(-x) \tilde{\Delta}_{j} \phi(x+y) dx.$$

► (Hölder inequiity)⇒

$$|\mathscr{I}_{3}^{j}| \leq \int_{\mathbb{R}^{d}} |\Delta_{j} p_{0,t}(-x)| |\tilde{\Delta}_{j} \phi(x+y)| dx \leq \|\Delta_{j} p_{0,t}\|_{L^{q}} \|\tilde{\Delta}_{j} \phi\|_{L^{p}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

▶ (Definition of Besov space and crucial lemma 7) \Rightarrow

$$|\mathscr{I}_{3}^{j}| \leqslant 2^{-\gamma_{2}j} \|\Delta_{j} p_{0,t}\|_{L^{q}} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}} \lesssim 2^{-\gamma_{1}j} t^{-\frac{1}{\alpha}(\frac{d}{p}-\gamma_{2}+\gamma_{1})} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}}$$

.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Notice that $\frac{d}{p} - \gamma_2 + \gamma_1 \ge 0$, which is $\gamma_2 \le \frac{d}{p} + \gamma_1$.

Main Results

Sketch of the proof

Future works

Estimate for \mathscr{I}_2^j

► Define function $\chi \in C_0^\infty$ with $\chi(x) = \begin{cases} 1 & \text{when } |x| < \frac{1}{2} \\ 0 & \text{when } |x| > 1. \end{cases}$

Lemma 11

Under condition \mathbf{H}_{β}^{b} , function $b_{z}(x) := \chi(x) \Big(b(x+z) - b(z) \Big) \in C^{\beta}(\mathbb{R}^{d})$. There is a constant C such that all $z \in \mathbb{R}^{d}$ $\|b_{z}\|_{C^{\beta}} \leq C$.

By Lemma11 and the fact that

$$\|f\|_{C^{\beta}(\mathbb{R}^{d})} \lesssim \sup_{z \in \mathbb{R}^{d}} \|f\|_{C^{\beta}(B(z,1))},$$

we assume $b \in C^{\beta}$ and have a commutator estimate:

Main Results

Sketch of the proof

Future works

Estimate for $\mathscr{I}_2^{\mathscr{I}}$

Define function $\chi \in C_0^{\infty}$ with $\chi(x) = \begin{cases} 1 & \text{when } |x| < \frac{1}{2} \\ 0 & \text{when } |x| > 1. \end{cases}$

Lemma 11

Under condition \mathbf{H}_{β}^{b} , function $b_{z}(x) := \chi(x) \Big(b(x+z) - b(z) \Big) \in C^{\beta}(\mathbb{R}^{d})$. There is a constant C such that all $z \in \mathbb{R}^{d}$ $\|b_{z}\|_{C^{\beta}} \leq C$.

By Lemma11 and the fact that

$$\|f\|_{C^{\beta}(\mathbb{R}^{d})} \lesssim \sup_{z \in \mathbb{R}^{d}} \|f\|_{C^{\beta}(B(z,1))},$$

we assume $b \in C^{\beta}$ and have a commutator estimate:

Lemma 12 (Chen-Zhang-Zhao 2017)

For $\beta \in (0, 1)$ and $\theta \in (-\beta, 0]$, there is a constant C such that $\|[\Delta_j, f]g\|_{\infty} \leq C2^{-j(\beta+\theta)} \|f\|_{C^{\beta}} \|g\|_{B^{\theta}_{\infty}},$ where $[\Delta_j, f]g := \Delta_j fg - f\Delta_j g.$

Introduction 00000000	Main Results 000000	Sketch of the proof	Future worl
Estimate for \mathscr{I}_2^j			

Lemma 13

Assume $\alpha \in (\frac{1}{2}, 2)$. Under condition H^b_β with $\beta \in ((1 - \alpha) \lor 0, \alpha \land 1)$. For any $\gamma_1 \in (0, \alpha)$ and T > 0, there is a constant C such that for all $t \in (0, T]$, $j \in \mathbb{N}_0$ and all classical solution u,

$$|\mathscr{I}_{2}^{j}| \leqslant C2^{-\gamma_{1}} \int_{0}^{t} (t-s)^{-\frac{2\gamma_{1}+\beta-1}{\alpha}} ||u(s)||_{C^{\gamma_{1}}} \mathrm{d}s.$$

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Introduction	Main Results	Sketch of the proof	Futu
0000000	000000	000000000000000000000000000000000000000	
Estimate for \mathscr{I}_2^j			

ire works

Lemma 13

Assume $\alpha \in (\frac{1}{2}, 2)$. Under condition \mathbf{H}^{b}_{β} with $\beta \in ((1 - \alpha) \lor 0, \alpha \land 1)$. For any $\gamma_{1} \in (0, \alpha)$ and T > 0, there is a constant C such that for all $t \in (0, T]$, $j \in \mathbb{N}_{0}$ and all classical solution u,

$$|\mathscr{I}_{2}^{j}| \leqslant C2^{-\gamma_{1}} \int_{0}^{t} (t-s)^{-\frac{2\gamma_{1}+\beta-1}{\alpha}} ||u(s)||_{C^{\gamma_{1}}} \mathrm{d}s.$$

Proof.

Notice that

$$\int_{0}^{t} \int_{\mathbb{R}^{d}} \Delta_{j} p_{s,t}(-x) \tilde{b}(x) \cdot \nabla \Theta_{t}^{y} u(s,x) \mathrm{d}x \mathrm{d}s$$
$$= \int_{0}^{t} \int_{\mathbb{R}^{d}} \Delta_{j} p_{s,t}(-x) [\tilde{\Delta}_{j}, \tilde{b}(x)] \nabla \Theta_{t}^{y} u(s,x) \mathrm{d}x \mathrm{d}s$$
$$+ \int_{0}^{t} \int_{\mathbb{R}^{d}} \Delta_{j} p_{s,t}(-x) \tilde{b}(x) \cdot \tilde{\Delta}_{j} \nabla \Theta_{t}^{y} u(s,x) \mathrm{d}x \mathrm{d}s$$

By crucial lemma and commutator estimate, we complete the proof.

Introduction	Main Results 000000	Sketch of the proof	Future works
Estimate for \mathscr{I}_1^j			

▶ Recall that

$$\mathscr{D}_{z}^{y}f(x) = f(x + \sigma(x + \theta_{t}^{y}, z)) - f(x + \sigma(\theta_{t}^{y}, z)) - \mathbb{1}_{\alpha \ge 1}\tilde{\sigma}(x, z) \cdot \nabla f(x).$$

▶ Define

$$\mu_{\theta}(h) := \int_{\mathbb{R}^d} (1 \wedge |x|)^{\theta} |h(x)| dx \quad \text{and} \quad \langle f, g \rangle := \int_{\mathbb{R}^d} f(x) g(x) dx.$$

Introduction 00000000	Main Results 000000	Sketch of the proof	Future works
Estimate for \mathscr{I}_1^j			

Recall that

$$\mathscr{D}_z^y f(x) = f(x + \sigma(x + \theta_t^y, z)) - f(x + \sigma(\theta_t^y, z)) - \mathbb{1}_{\alpha \ge 1} \tilde{\sigma}(x, z) \cdot \nabla f(x).$$

▶ Define

$$\mu_{\theta}(h) := \int_{\mathbb{R}^d} (1 \wedge |x|)^{\theta} |h(x)| dx \quad \text{and} \quad \langle f, g \rangle := \int_{\mathbb{R}^d} f(x) g(x) dx.$$

Lemma 14

For any $\theta \in [0,1]$, there exists a constant $C = C(d,\theta) > 0$ such that for all $|z| \leq \frac{1}{2c_0}$, $f \in C^{\theta}$ and $g \in C^2$

$$|\langle \mathscr{D}_{z}^{y}f,g\rangle| \leqslant C|z|^{\theta} ||f||_{\infty} \left[\mu_{0}(|g|) + \mu_{\theta}(|\nabla g|)^{\theta} \mu_{\theta}(|g|)^{1-\theta}\right]$$

when $\alpha < 1$ and

$$\begin{split} |\langle \mathscr{D}_z^y f, g \rangle| &\leq C |z|^{1+\theta} \|f\|_{\mathbf{C}^{\theta}} \left[\mu_0(|g|) + \mu_1(|\nabla g|) + \mu_{1+\theta}(|\nabla^2 g|)^{\theta} \mu_{1+\theta}(|\nabla g|)^{1-\theta} \right] \\ \text{when } \alpha \geqslant 1. \end{split}$$

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

The key point of the proof

▶ For simplicity, we assume $\alpha < 1$ and $\phi_z(x) = \sigma(x + \theta_t^y, z)$. Rewrite

$$\mathscr{D}_z f(x) := \mathscr{D}_z^y f(x) = f(x + \phi_z(x)) - f(x + \phi_z(0))$$

▶ We can let $\overline{f}(x) = f(x + \phi_z(0))$. Their C^{θ} norms are the same. Therefore we assume that $\phi_z(0) = 0$ and there is a constant such that $|\phi_z(x)| \leq C(|x| \wedge 1)|z|$.

Main Results

Sketch of the proof

▲□▶▲□▶▲□▶▲□▶ □ のQで

The key point of the proof

For simplicity, we assume $\alpha < 1$ and $\phi_z(x) = \sigma(x + \theta_t^y, z)$. Rewrite

$$\mathscr{D}_z f(x) := \mathscr{D}_z^y f(x) = f(x + \phi_z(x)) - f(x + \phi_z(0))$$

▶ We can let $\overline{f}(x) = f(x + \phi_z(0))$. Their C^{θ} norms are the same. Therefore we assume that $\phi_z(0) = 0$ and there is a constant such that $|\phi_z(x)| \leq C(|x| \wedge 1)|z|$.

• Let $\Gamma_z(x) = x + \phi_z(x)$. By change of variable, we have

$$\langle \mathscr{D}_z f, g \rangle = \langle f, \mathscr{D}_z^* g \rangle,$$

where

$$\mathscr{D}_z^*g(x) = \det(\nabla_x \Gamma_z^{-1}(x))g(\Gamma_z^{-1}(x)) - g(x).$$

Noticing that

 $|\det(\nabla_x \Gamma_z^{-1}(x)) - 1| \leq |z|$, and $|\Gamma_z^{-1}(x) - x| \leq CC(|x| \wedge 1)|z|$,

we complete the proof.

Let $\varepsilon \in (0, \alpha \wedge 1)$ and $\theta \in ((\alpha - 1) \vee 0, \alpha \wedge 1)$. For any $\gamma \in (0, \alpha - \varepsilon)$, there is a constant C > 0 such that for all $j \in \mathbb{N}_0$ and $t \in (0, T]$,

$$|\mathscr{I}_1^j| \leqslant C 2^{-\gamma j} \int_0^t (t-s)^{-(\gamma+\varepsilon)/\alpha} \|u(s)\|_{C^\theta} \mathrm{d}s.$$

Recall

$$\mathscr{I}_1^j = \int_0^t \int_{\mathbb{R}^d} \Delta_j p_{s,t}(-x) \tilde{\mathscr{L}}^{\alpha} \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s.$$

Proof.

Let $\delta = \frac{\kappa}{c_0}$. We only prove the estimate for $\alpha \in (1, 2)$. The case $\alpha \in (0, 1]$ is similar and easier. Since the time variable and y does not play any essential role, below we drop the time variable and Θ_t^y for simplicity of notations. By definition we can make the following decomposition:

$$\tilde{\mathscr{L}}^{\alpha}u = \mathscr{A}_{\delta}u + \bar{\mathscr{A}_{\delta}}u$$

where

$$\mathscr{A}_{\delta}u(x) = \int_{|z| \leq \delta} \mathscr{D}_z u(x)\nu(\mathrm{d}z) \quad \text{and} \quad \bar{\mathscr{A}_{\delta}}u(x) = \int_{|z| > \delta} \mathscr{D}_z u(x)\nu(\mathrm{d}z).$$

Proof.

$$\mathscr{I}_{1}^{j} = \int_{0}^{t} \langle \Delta_{j} p_{s,t}, \mathscr{A}_{\delta} u \rangle ds + \int_{0}^{t} \langle \Delta_{j} p_{s,t}, \bar{\mathscr{A}_{\delta}} u \rangle ds.$$

By Lemma14, we have

$$|\langle \Delta_j p_{s,t}, \mathscr{A}_{\delta} u \rangle| \leq C \int_{|z| \leq \delta} |z|^{1+\theta} \nu(\mathrm{d} z) ||u(s)||_{\mathbf{C}^{\theta}} \mathscr{B}(s,t),$$

where

$$\mathscr{B}(s,t) = \left| \sum_{i=0}^{1} \mu_i(|\nabla^i \Delta_j p_{s,t}|) + \mu_{1+\theta}(|\nabla^2 \Delta_j p_{s,t}|)^{\theta} \mu_{1+\theta}(|\nabla \Delta_j p_{s,t}|)^{1-\theta} \right|.$$

Let $\alpha < 1 + \theta < \alpha + \frac{\varepsilon}{2}$. By crucial lemma, we obtain that

$$\begin{split} & |\int_0^t \langle \Delta_j p_{s,t}, \mathscr{A}_\delta u \rangle \mathrm{d}s| \leqslant C \int_0^t \|u(s)\|_{\mathbf{C}^\theta} \mathscr{B}(s,t) \mathrm{d}s \\ & \lesssim 2^{-\gamma j} \int_0^t (t-s)^{-\frac{\gamma}{\alpha}} \|u(s)\|_{C^\theta} \mathrm{d}s + 2^{-(\gamma-\varepsilon)j} \int_0^t (t-s)^{-\frac{\gamma}{\alpha}} \|u(s)\|_{C^\theta} \mathrm{d}s, \end{split}$$

where

$$\int_0^t \mu_{1+\theta}(|\nabla^j \Delta_j p_{s,t}|) \|u(s)\|_{C^\theta} \mathrm{d}s \lesssim \int_0^t \int_{\mathbb{R}^d} |x|^{\alpha-\frac{\varepsilon}{2}} |\nabla^j \Delta_j p_{s,t}(x)| \|u(s)\|_{C^\theta} \mathrm{d}s,$$

$$\int_0^t |\langle \Delta_j p_{s,t}, \bar{\mathscr{A}_{\delta}} u \rangle| \mathrm{d}s \lesssim 2^{-\gamma j} \int_0^t (t-s)^{\frac{\gamma}{\alpha}} ||u(s)||_{\infty} \mathrm{d}s.$$

Introduction	Main Results 000000	Sketch of the proof 00000000000000000000000000000000000	Future works
Future works			

▶ We prove that the solution of SDE driven by cylindrical Lévy process has a density in Sobolev space H^{s,r} with

$$s < \alpha - (\alpha - 1) \lor (1 - \beta)$$
 and $r < \frac{d}{d - \alpha + s + \beta - 1}$,

but this result does not imply that this density is continuous. So how to improve the index s and how to make r greater are interesting.

In our work, we only consider the strong Feller property, which only depend on the distribution of X^x_t. Moreover, the continuous property of σ is enough to guarantee the existence of weak solution. So how to drop the assumption that σ is Lipschitz is another interesting question.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thanks for your attention!

