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Motivation

» Letd > 2. Consider the following stochastic differential equation :

{dXi—/MXQdBr+MXUdﬂ (1.1)

Xo=z € R?

where B, = (Bj, ..., Bf) is a d-dimensional standard Brownian motion, b :
R? — R? is a measurable function, and A : R? — R? @ R? is a d x d matrix-
valued measurable function and satisfies

(H) A € C(R?) and for some ¢ > 0, it holds that
|det A(z)| > co, z€R%

» Under the above assumptions and b is bounded, it is well known that for each = €
R%, SDE (1.1) admits a unique weak solution X (z)(see [1]) . Furthermore, if
A and b have more regularity it admits a density p;(x, y) enjoying the following
estimates(see [2]): for any 7" > 0, there are constants c¢; > 0 such that for all
0<t<Tandz yecR?

—d/2 g—calo—yl?/t 4/2 —calo—yl?/t

C1 < pt(l‘»y) < st
[1] Bass, R.F., Diffusions and Elliptic Operators. Springer-Verlag, New York, 1997

[2] Z.-Q. Chen, E. Hu, L. Xie, and X. Zhang, Heat kernels for non-symmetric diffusion operators with jumps.J.
Differential Equations, 263 (2017), 6576-6634.
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» Notice that B} in By = (Btl, ey Btd) are i.i.d. 1-dimensional standard Brownian
motions.

» Naturally, we consider the standard cylindrical a-stable process Ly = (Ltl, ey Ltd)
and the following SDE

{dXt = A(X¢—)dL: 4 b(Xy)dt, (1.2)

XOZI‘ERd,

where L are i.i.d. 1-dimensional standard a-stable processes.

» In fact, L; admits a density p:(z) enjoying the following estimates :
For any T" > 0, there are constants c1,c2 > Osuch thatforall0 < s <t < T
and z € R?
d t d t
alli)——— <pe(z) < ellfn) —————.
(VE+ [yt F(VE+ [yt
» However, there is no result for the density estimate for X;. Actually, the exis-
tence of the solution X and the density of X are still problem.
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» More generality, we consider the following SDE driven by the cylindrical a-
stable process Ly,

{de-_jkdaLXt7z)N(dadz)+bLXQdu (L3)

X =z eRY,
where o = (0:)%; : R x RY — R?is a measurable function, and N (dt, dz)
is the Poisson random measure of L defined as follow

N((s,t], E) :== Z Lo,-1, )eE-
s<u<t
» Define v(F) := EN([0, 1], E). For simplify, we assume that for all 2 € R? and
0<r<R<+o0

/T< o(z,z)v(dz) = 0.

<IzI<R
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» More generality, we consider the following SDE driven by the cylindrical a-
stable process Ly,

{de-_jkdaLXt7z)N(dadz)+bLXﬁdu (L3)

X =z eRY,
where o = (0:)%; : R x RY — R?is a measurable function, and N (dt, dz)
is the Poisson random measure of L defined as follow

N((s,t], E) := Z Yr,-L, )eE-
s<u<t
» Define v(F) := EN([0, 1], E). For simplify, we assume that for all 2 € R? and
0<r<R<+o0

/T< o(z,z)v(dz) = 0.

<|zI<R

Questions:

» In what condition of ¢ and b, there is a weak(or strong) solution of SDE (1.3)?
» If there is a weak solution, does the solution have a density?
» If there is a weak solution, can we get some precise estimates for it?
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» When L; is a d-dimensional standard «-stable process, the infinitesimal genera-
tor of X7 has the following form

flz+o(z,2)) - f(z)

Zf(z) =p-v. » EE dz »
[z +2) - () '
= p.v. y ‘Z‘Tn(x,z)dz,
where
|Z|d+a -1
k(z, z) |det V.o~ (z, 2)].

" Joi(x, 2)[d*e
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» When L; is a d-dimensional standard «-stable process, the infinitesimal genera-
tor of X7 has the following form

f@+o(@,2) - fz)

Zf(z) =p-v. y EE z »
[z +2) - () '
= p.v. y ‘Z‘T/ﬁ(x,z)dz,
where
|Z|d+a -1
k(z,z) = |det V.o~ (z, 2)].

lo=!(x, 2) |4+

» When L; is a d-dimensional cylindrical a-stable process, which is our case, the
infinitesimal generator of X has the following form

va f:c—|—c730zez))—f(ac)dz7

‘1+a

where e; = (0, .., 1(i-th), .., 0).
» Notice that, it is impossible to find such a « in (1.4) this time.
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» Let .# be the Fourier transform. The 1nﬁnitesimal generator of d-dimensional

cylindrical a-stable process is Z (0:0:)2 2 with
d
F(3 @003 )6 = cz 617 F (£)(€) = i (O F (H)(E),
i=1

where 11 € C(R®\ (UL R;)), where

R; := {z € R%; z; = 0}.

» The infinitesimal generator of d-dimensional standard a-stable process is A%

with
F(AZ 1)(&) = clé|* F()(€) == v2()F (/)(),
where 12 € C*(R%\ 0).

» Therefore, compared with standard «a-stable process, the cylindrical one is more

difficult to be dealed with.
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Assumptions

(A°) o(z,z) = A(z)z for some matrix value map A = (a; ;) : R? = R*®R?, there
is a positive number co such that for any =, y, £ € R? and all4,j =1, ...,d

o 1l < 1€ Am)E] < colél, (1.5)

lai,j(x) — ai;(y)] < colz —yl. (1.6)
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Assumptions

(A°) o(z,z) = A(z)z for some matrix value map A = (a; ;) : R? = R*®R?, there
is a positive number co such that for any =, y, £ € R? and all4,j =1, ...,d

co 1€l < 1€+ A(@)€| < colg], (1.5)
lai;(z) — ai;(y)| < colz —yl. 1.6)
(A%) For g € (0,1),
[b(z) = b(y)|

[bllcs := sup [b(z)|+ sup < o0. (1.7

z€Rd |z—y|#0 |z —yl?
» We always assume that there is a weak solution X of SDE (1.3) and define

P7l¢(z) = B(p(XT)),  P7:=P7°.



Well-known results

2006 (Bass-Chen)

There is a weak solution X{ of (1.3) when o(z,2) = o(x)z is continuous in
variable x and b = 0.

DA
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Well-known results

2006 (Bass-Chen)
There is a weak solution X{ of (1.3) when o(z,2) = o(x)z is continuous in
variable x and b = 0.

2010 (Bass-Chen)
Assume o(z,2) = o(x)z is continuous in variable z and b = 0. For any
bounded domain D C R?, define 7p := inf{t > 0, X7 ¢ D}. If any bounded
function h satisfies

h(z) = E[h(X7,)] foreveryx € D,

then A is Holder continuous in D.



Introduction Main Results Sketch of the proof Future works
00000080 000000 0000000000000 000000

Well-known results

2006 (Bass-Chen)
There is a weak solution X{ of (1.3) when o(z,2) = o(x)z is continuous in
variable x and b = 0.

2010 (Bass-Chen)
Assume o(z,2) = o(x)z is continuous in variable z and b = 0. For any
bounded domain D C R?, define 7p := inf{t > 0, X7 ¢ D}. If any bounded
function h satisfies

h(z) = E[h(X7,)] foreveryx € D,

then h is Holder continuous in D.
2012 (Debussche-Fournier )
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Well-known results

2006 (Bass-Chen)
There is a weak solution X{ of (1.3) when o(z,2) = o(x)z is continuous in
variable x and b = 0.

2010 (Bass-Chen)
Assume o(z,2) = o(x)z is continuous in variable z and b = 0. For any
bounded domain D C R?, define 7p := inf{t > 0, X7 ¢ D}. If any bounded
function h satisfies

h(z) = E[h(X7,)] foreveryx € D,

then A is Holder continuous in D.
2012 (Debussche-Fournier )
2017 (Chen-Zhang-Zhao)

Under the condition (A?) and (A%) with 8 € (1 — %5, 1), there is a unique strong
solution of (1.3).
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2018 (Kulczycki-Ryznar-Sztonyk)
Assume b = 0 and LY is a cylindrical a-stable process with o € (0,1). Under
the condition (A?), for any v € (0,«), T > 0, there is a constant C' such that
forallt € (0,7], z,y € RYand f € L°°(R?)

| f(z) = Y F()| < Cla =yt = | fl| . (1.8)

For any v € (0, %), T > 0, there is a constant C' such that for all t € (0, 7],
z € RYand f € L°°(RY) N LY (RY)

P F(@)] < O AL I (1.9)
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2018 (Kulczycki-Ryznar-Sztonyk)
Assume b = 0 and LY is a cylindrical a-stable process with o € (0,1). Under
the condition (A?), for any v € (0,«), T > 0, there is a constant C' such that
forallt € (0,7], z,y € RYand f € L°°(R?)
leg leg e 4

|PY f(x) = P f(y)l < Clo =yt || fllee. (1.8)
For any v € (0, %), T > 0, there is a constant C' such that for all t € (0, 7],
z € RYand f € L°°(RY) N LY (RY)

P F(@)] < O AL I (1.9)

» Notice that they can not deal the case a € [1,2).
» Holder index ~y can not be 1.



Part 2: Our main results
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Introduction Main Results Sketch of the proof
00000000 @00000 0000000000000 000000

Littlewood-Paley decomposition and Besov space

> Let ¢ be a radial C*°-function on R? with
¢o(§) =1 for £ € By and ¢o(§) =0 for £ ¢ Bo.
» Foré& = (&1,---,&,) € RYand j € N, define
$;(€) = ¢o(277€) — go(27 V7).
> Itis easy to see that for j € N, ¢, (£) = ¢1(27U~V¢) > 0and

k
suppe; C Byre1 \ Bosm1, Y 65(8) = ¢0(277¢) > 1, k — oo.

=0

> Notice that {¢; }en, is a partition of unity of

R =B, U (ujeN (Byi+1 \BQH)).

Future works
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» For given j € Ny, the block operator A; is defined on .’ by
Ajf(a) = F ¢ F()x) = F () * f(2)
=270 [ 5 o0 @ - i) fw)a.
R
» For j € Ny, by definition it is easy to see that
A; =A;A;, where A;i=A; 1+ A;+ A with A1 =0,  (2.1)
and A; is symmetric in the sense that

(Ajf,9) =(f,A59).
» The cut-off low frequency operator Sy, is defined by

k—1
S =Y A =2" [ G@E—iwy >t @2
=0

» We rewrite (2.2) as

=Y A,
j=0

which is called the Littlewood-Paley decomposition.
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Definition 1 (Besov space)
For any s € R and p € [1, oo], the Besov space B, .. is defined by

B} (') = {1 € #'(R") : | flloy,. :=sup (2718 fllr) < o0}
Jz

Proposition 2
Forany s1 > 0 and s2 > 0 with so ¢ N,
H'P(RY) € BiLo(RY) and C™(RY) = B2 (R?),

where H*VP(RY) and C*2(R?) are the common Sobolev space and Holder space
respectively.
Foranyn € N,

C™(R%) C BL o (R?).
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Definition 1 (Besov space)
For any s € R and p € [1, oo], the Besov space B, .. is defined by

B} (') = {1 € #'(R") : | flloy,. :=sup (2718 fllr) < o0}
Jz

Proposition 2
Forany s1 > 0 and s2 > 0 with so ¢ N,
H'P(RY) € BiLo(RY) and C™(RY) = B2 (R?),

where H*VP(RY) and C*2(R?) are the common Sobolev space and Holder space
respectively.
Foranyn € N,

C™(R%) C BL o (R?).
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Our assumption for o

(H;,) There is a constant co > 1 such that forall z,y, z € R%andall A > 0

d
inf inf )\Z|w-a(r, %)| >t
=1

weSd=1 A>0

|lo(z,2) — o(y, 2)| < colz —yllz].

co ' |2l <lo(x,2)| < col2l.

Remark 3

» Notice that condition HS implies condition Hy, here.

Future works

(2.3)

» o(x,z) = (2 + sinz1)z satisfies condition Hy, but not satisfies condition H.
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Main Results

Theorem 4

Let a € (0,2) and 8 € [0,1] with a + 8 > 1. Assume (H?),
c1 > 0, and one of the following conditions holds:

(i()b=0, B=1; (i) € (,2) and b € L>(R; C”).
Let X5 +(x) be the unique solution of SDE (??) and define
Ps (@) = Ep(Xs 4 (2))-

Lety € [0,a+aAB)andn € (—((a+B—1)A1),7]. Forany T > 0, there exists
a constant C' > 0 such that forall0 < s <t < T,

Vol < c1 for some

n—y
[1Pseplly, o S CE—5)"= llollsn, - 2.4)

co

» Notice that (2.4) reduced the restriction of the ~y in (1.8)
from (0, ) to (0, + o A B) by taking n = 0. In particular, we have gradient
estimate. Moreover, we can deal with the case oo > 1.

» By a way of interpolation, we also get (1.9).
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Main Results

Corollary 5

(A) Let ¢ € Upc(atp-1)a1Bxloo Forany 0 < s < t, Ps 10 € Ny<atansBl, oo
solves the following backward Kolmogorov equation: for all z € R?,

t1
Py 1o(x) = Py ro() +/ fso’st,tgo(x)ds, 0<to<ti1 <t. (2.5)
to

(B) For a € (3,2), the following gradient estimate holds: for0 < s < t < T,

1
VP eplloo < Ct—5)" = [lolloo- (2.6)

(C) Foreach s < t, the random variable X () admits a density ps(x, -) with

Ps,t(T,-) € mn<(a+571)AlB71',1- 2.7
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Main Results

Corollary 5

(A) Let ¢ € Upc(atp-1)a1Bxloo Forany 0 < s < t, Ps 10 € Ny<atansBl, oo
solves the following backward Kolmogorov equation: for all = € R?,

t1
Py ro(z) = Py 1ip(2) +/ fs"’bPS,tcp(x)ds, 0<to<t1i <t (25)
to

(B) For a € (3,2), the following gradient estimate holds: for0 < s < t < T,

_1
VP eplloo < Ct—5)" = [lolloo- (2.6)

(C) Foreach s < t, the random variable X () admits a density ps(x, -) with

Ps,t(2,+) € Np<(ars—1)mBT ;- @7

» Notice that (??) reduced the restriction of the v in (1.8)

from (0, @) to (0, «+«aAB). In particular, we have gradient estimate. Moreover,
we can deal with the case oo > 1.

» By a way of interpolation, we also get (1.9) from Theorem??.
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PDE related to SDE

» Naturally we consider the following PDE,

{Gtu(t, z) = ZLiu(t, z) + b(x) - Vu(t, x),
u(0,z) = ¢(z),

where ¢ € C°°(R%) and

Llu(t,x) = i p.v. /]R (u(t, z+o(x,z)) — ult, :v)) v(dz).

Future works

3.1
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PDE related to SDE

» Naturally we consider the following PDE,

{Gtu(t, ) = L2u(t, =) + b(x) - Vu(t, z), G.1)

U(O, x) = d)(x)v

where ¢ € C°°(R%) and

Llu(t,x) = i p.v. /]R (u(t, z+o(x,z)) — ult, :v)) v(dz).

Definition 6

We call a function u(t, ) € LS.([0, +00); C*T¢(RY) N CH T (RY)) for some & > 0
be a classical solution of PDE (3.1) in [0, T if u, Vu € Cloc([0, 00) x R?) and for
all t € [0,00) and x € R?

u(t,z) = /0 Llu(s,z) + b(z) - Vu(s,z)ds + ¢(z)
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Future works

» Is there a classical solution of PDE (3.1)?
» Fortunately, we have a priori estimate: under the condition (HZ) and (Hg) with 8 €
(1-a)V0,a),forany T > 0and e € (0, B A ), there is a constant C' such that
forall ¢t € [0,T], ¢ € C°° and classical solutions u
[u@®)llga+e < Clidllcarte. (3.2)

» By (3.2) some continuity methods and vanishing viscosity approach, we obtain the
existence of the classical solution.
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Is there a classical solution of PDE (3.1)?
» Fortunately, we have a priori estimate: under the condition (HZ) and (H%) with 8 €

(1-a)V0,a),forany T > 0and e € (0, B A ), there is a constant C' such that
forall ¢t € [0,T], ¢ € C°° and classical solutions u

[u@®)llcate < Cllpllcate- (32

» By (3.2) some continuity methods and vanishing viscosity approach, we obtain the
existence of the classical solution.

Let u be a classical solution. By It6 formula, s — u(t — s, X7) is a martingale
for s € [0, ¢]. Then

P7¢(x) = E((X7)) = E(u(t — 5, XT)) = E(u(t, z)) = u(t, z).

The equality above tell us that if we want to establish any estimate of P7"’¢(),
it is enough to establish the estimate of classical solution .

Moreover, it tell us that the uniqueness of weak solution of SDE (1.3) is equiva-
lent to the uniqueness of classical solution of PDE (3.1).
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Crucial lemma

> Let#: R — R?is a measurable function and ps_; be the transition probability
of process

Zsy = /: /Rd o(6(r), z) N(dz, dr).

Lemma 7 (Crucial Lemma)

» Forany B € [0,a), v € [0,+00) and T > 0, there is a constants C' such that
formeNoallj >0, f € L, (Ry)andt € (0,T] s € [0,1),

t ot
| [ v @Il )ldeds < 02 [ = 573 (5.
0 R 0

» Foranym € Ny, g € [1,00], % + % = land v € [0,+00), there is a constant
C such that for all (t — s) € (0,T),

1 d .
V™ Ajps,tll paqeay < Ct — s)" =07 TR)27%,
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The key point of proof
» For simplify, we assume o (z, z) = A(x)z for some matrix value map A : R —
R? @ R? and a(t) := A(6(t)). Recall that p, , is the transition probability of

t
Zs,t:/ a(r)dLe with A LS, L e

Therefore using the change of variable and the scaling property, we have

t t—s
/ a(r)dLy = / a(r + s)d(L?Jrs - L?)
s 0

@ (t— s)_% /0 a(r(t —s)+ s)dLy.

We denote by po,1 the density of fol a(r(t — s) + s)dLy, then

pse(x) = (t =)

1

Poa((t —s) =)

_4d
o
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The key point of proof

» For simplify, we assume o (z, z) = A(x)z for some matrix value map A : R —
R? @ R? and a(t) := A(6(t)). Recall that p, , is the transition probability of

t
Zoy = / a(r)dLe with A LS, L e

Therefore using the change of variable and the scaling property, we have

t t—s
/ a(r)dLy = / a(r + s)d(L?JrS - L?)
s 0

@ (t— s)_% /0 a(r(t —s)+ s)dLy.

We denote by po,1 the density of fol a(r(t — s) + s)dLy, then

pse(x) = (t =)

1

Poa((t —s) =)

_d
» Condition

d
inf inf A |w- o(s, %)| >t (3.3)
=1

wesSd—1 A>0

guarantee that for any n € No and 3 € [0, «v), there is a constant C' such that

/ |z|? V" Po.1 (z)|dz < C.
Jod
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Our approach

» Firstly, we use a technology of translate alone the characteristic line 6; and get a
new equation:

u(0,) = §(), G4

where @(t, z) = u(t, z+6;) and b(z) = b(z+6;) —b(6;). Notice that |b(z)| <
|]® which releases the regularity of spatial .

{atﬂ(t, z) = L&t z) + b(x) - Va(t, x),

» Then we have the following presentation

t t
ﬂ(t,x):/ Ps,t<f§—$§g>a(s,x)ds+/ Poi(b-Va)(s,z)ds (3.5)
0 0
+ Posd(a), (3.6)

where .Z7 is a infinitesimal generator of some process introduced in the crucial
lemma.
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» Next step is a highlight point. We operator the block operator A; on both sides
and only look at the point zero:

t t
Ayt 0) = / AP (2~ 22, )als,0)ds + / APy o(b - Vii)(s, 0)ds
JO JO
+ A; Py.+¢(0).

» Notice that Aju(t,6;) = Aja(t,0). We take the supremum of the initial point
of the 6, and get the estimate of ||A;u(t)||. Then by taking sipremum of j, we
have for some ¥ > —1 and any y; € [0, a):

t 1(d
1 -2 (L—+
||u(t)||3"*1‘ S / (t—s) 9||“(3)||B;’C1 Oods t e <p " 71) ||¢||B;j2oo-
03,00 o ) :

» Notice that a highlight point here is that we turn the convolution P ; f into an in-
ner product (ps ¢, f). Therefore, we use our crucial lemma and get the regularity
of the space.
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Volterra-type Gronwall inequality

Lemma 8 (Volterra-type Gronwall inequality)
Assume A > 0. For any 0,9 > —1 and T > 0, there exists a constant C =

C(A,0,9,T) > 0 such that if locally integrable functions f : Ry — R satisfy
A/ (t—s5)?f(s)ds + At®, te (0,T),

then

f@ <ct’, te(o,T).

_’YQJWI) is a local integral function on [0, 7.

» When & — 72 + 71 < a, t_é(%
We obtain main result for y; € [0, «) and g -y < a—1.

» To lift the limitation of ; from [0, &) to [0, & + « A 1), we need a lift theorem
by the semigroup property of Feller process.

» The proof can be found in [1].

[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation.
J.Funct. Anal., 258 (2010), 1361-1425.
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Lift lemma

Lemma 9
Assume one of the following conditions holds,

> a€(0,2),b=0andlet g = 1.

> o € (3,2) and condition (H}) holds with 3 € ((1 — a) V 0, A 1).
Under condition (Hy), for any

yE(mat+anp), §€0,a),

there is a constant Cr such that for all ¢ € C§°(R?) and all t € (0, T,

b
156l 5

00,00

_95
< Crt e ||l gys- (3.7

v

» Notice that P7"°¢ = P7PP7 ¢ and (o, a + a A B) — o C (0, @), by this C-K

2 2
property, we obtain the main result.
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Characteristic line

» Let 67 be a solution of following ODE

{df’i’ = —b(0)),

05 =y,
fort € [0,7] and y € R%.

Remark 10

Under the condition HY, there is a constant C' such that for any |z —y| > 1,
lb(x) — b(y)| < Cle —yl,

which implies that 8¢ would never blow up. See Wang—Zhangm.

Future works

[1] Degenerate SDE with Holder-Dini drift and non-Lipschitz coefficient. STAM J. Math. Anal. 48 (2016), 2189-2226.



Perturbation

» Define ©7g(z) := g(x + 0}). Then O u satisfies a new PDE
{ u

20Yu(t, ) = L50Vu(t, x) + L0Yu(t, z) + b(z) - VOYu(t, ),
Ofu(0,z) = ¢(x +y),

(3.8)

DA
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Perturbation

» Define ©7g(z) := g(x + 0}). Then O u satisfies a new PDE

20Yu(t, ) = L50Vu(t, x) + L0Yu(t, z) + b(z) - VOYu(t, ),
Ofu(0,z) = ¢(x +y),
(3.8)

» where b(x) = ©Yb(z) — ©Yb(0),
Z5g@) = [ (ol +0(00.2) = 90) = Laao(6}.2) - V(@) ) v(d).
Zgla) = [ Palavaz)
= [, (sta+ ol +67.2) = a(o + 001, 2)) = 1z13(e.2) - V(o) )(d),

with 6(z, 2) = o(z + 07, 2) — (67, 2).
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Perturbation

» Define ©7g(z) := g(x + 0}). Then O u satisfies a new PDE

20Yu(t, ) = L50Vu(t, x) + L0Yu(t, z) + b(z) - VOYu(t, ),
Ofu(0,z) = ¢(x +y),
(3.8)

» where b(x) = ©Yb(z) — ©Yb(0),
Z5g@) = [ (ol +0(00.2) = 90) = Laao(6}.2) - V(@) ) v(d).
Zgla) = [ Palavaz)
= [, (sta+ ol +67.2) = a(o + 001, 2)) = 1z13(e.2) - V(o) )(d),

with 6(z, 2) = o(z + 07, 2) — (67, 2).
» Notice that there is a constant C' such that |b(z)| < C|z|? A |z| and

5(0,2) =0, |o(z,2)| < colzll2],  [Vad(2,2)| < colz].



» Notice that .5y is the infinitesimal generation of the process

st_// 9?,

N(dr,dz).

DA
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» Notice that .Z5* is the infinitesimal generation of the process

st_/ / (67, 2)N(dr,dz).

» Since the constant co in condition H, is independent with = and z, we drop the
coefficient y and denote o (r, z) := o (6, z).
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» Notice that .Z5* is the infinitesimal generation of the process
t
o -
L, = / / o(0Y,2)N(dr,dz).
s R4
» Since the constant co in condition H, is independent with = and z, we drop the

coefficient y and denote o (r, 2) := o (07, 2).

> We denote by ps.¢(z) the transition probability of LI ,, then crucial lemma is

available for ps ;. By the Duhamel’s formula,

t
OYu(t,w) :/ / ps.t(w — ) LOYu(s, x)dzds
0 JRrd
t
+ / / ps.t(w — 2)b(x) - VOYu(s, z)dxds
Jo JRd

+ / po,t(w — z)o(x + y)dz.
Rd
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» Notice that .Z5* is the infinitesimal generation of the process

L‘;t_// (0¢, 2)N(dr,dz).

» Since the constant co in condition H, is independent with = and z, we drop the
coefficient y and denote o (r, 2) := o (07, 2).

> We denote by ps.¢(z) the transition probability of LI ,, then crucial lemma is
available for p, ;. By the Duhamel’s formula,

t
OYu(t,w) :/ / ps.t(w — ) LOYu(s, x)dzds
0 JRrd
t
+ / / ps.t(w — 2)b(x) - VOYu(s, z)dxds
Jo JRd
+ [ poatw =)o + e,
Rd

» We operate the block operator A; on both sides and let w = 0,

t
Aju(tﬁf):Aj@fu(t,O)z/ / Ajps i (—2) L*OYu(s, x)dzds
0 JR4

/ / Ajpos(—2)b(x) - VOYu(s, z)dxds + / Ajpos(—2)(z +y)da,
Rd

=9 + I + 7.
3.9
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Estimate for .7;

> (A]‘A]’ = Aj and A; is symmetric)=>
g = /Rd Ajpot(—z)p(z +y)de = /Rd Ajpot(—2)Aj¢(z + y)da.
» (Holder inequlity)=
EZRS /}Rd |Ajpo.(—2)[|8j6(x + y)lda < [|Ajpo,e]lLallA;dl|ze,

1 1 _
where;Jrgfl.

» (Definition of Besov space and crucial lemma 7)=-
5] < 2772 Agpoellnalldl . S 279 ETIW g o

+ 71

» Notice that % — 2 + 71 = 0, which is 2 < %
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Main Results
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Estimate for .7]

» Define function x € Cg° with
1 when |z
T

x(z) = {O when |

==

| <
| >
Lemma 11

Under condition HY, function b-(z) := x(z) (b(m +2z)— b(z)) € CP(RY). There

is a constant C such that all z € R?
lbzlcs < C.

» By Lemmall and the fact that
Hf”cB(Rd) < sup Hf"cB(B(z,l))?
z€RA

we assume b € C® and have a commutator estimate:
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Estimate for .7]

» Define function x € Cg° with

_J1 when|z| <3
x(z) = {O when |z| > 1.

Lemma 11

Under condition HY, function b-(z) := x(z) (b(m +2z)— b(z)) € CP(RY). There

is a constant C such that all z € R?
lbzlcs < C.

» By Lemmall and the fact that
Hf”cB(Rd) < sup Hf”CB(B(z,l))?
z€RA

we assume b € C® and have a commutator estimate:

Lemma 12 (Chen-Zhang-Zhao 2017)

For B € (0,1) and 6 € (—p,0), there is a constant C such that
114, fgllee < C277C*D| Fllcsllgll 5.,

where [A;, flg := A;fg — fAg.
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Estimate for .7]

Lemma 13

Assume o € (3,2). Under condition H} with B € ((1 — a) V 0,a A 1). For any
v1 € (0,) and T' > 0, there is a constant C such that for all t € (0,T), j € Ng and
all classical solution u,

. t 2y, +8—1
|73 <02‘”1/ (t—s5) o |[u(s)]|gw ds.
0
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Estimate for .7]

Lemma 13

Assume o € (3,2). Under condition H} with B € ((1 — a) V 0,a A 1). For any
v1 € (0,) and T' > 0, there is a constant C such that for all t € (0,T), j € Ng and
all classical solution u,

2v1+8-1

‘ ¢
BZAES C’2_W1/ (t—s5)"" = ||u(s)|lcnds.
0

Proof.
Notice that

/0 /Rd Ajps,t(—ﬂf)g(x) . V@tyu(s,x)dmds
= /t /d Ajps,i(—2)[A;, b(z)| VOYu(s, z)dxds

t ~
+/ / Ajps.i(—x)b(x) - A;VOYu(s, x)dxds.
0 JRd

By crucial lemma and commutator estimate, we complete the proof. O




Estimate for .7/
» Recall that

DY f(x) = flx+o(x+0Y,2)) — flx+0(0Y,2) — Laz16(x,2) - VF(2).
> Define

/ f Qs)dm

pe(h) : / (A Alz)?|h(z)|de and (f,g)

Q>
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Estimate for .7/
» Recall that
DL (@) = f(@+0(0+0/,2) = (@ +0(0},2) — Laz15(2,2) - Vf (2).
» Define

polt) = [ AAal) ha)lde and ()= [ S

Lemma 14

For any 0 € [0, 1], there exists a constant C' = C(d, 0) > 0 such that for all |z| <
fecC®andge C?

200

(22 f,9)] < Clz’ [ fllo [1o(Ig]) + 1o (1V9)° o(lgl) ~*]

when a < 1 and

{2 f, )| < Clal N fllce [o(lgl) + 1 (1Vg]) + pa+o (1929 pate(1Vg])' ]

when o > 1.
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The key point of the proof

» For simplicity, we assume « < 1 and ¢, (z) = o(z + 07, z). Rewrite
P-f(x) = 7 f(x) = f(z + ¢-(2)) — f(z + ¢-(0)).

> We can let f(x) = f(x + ¢.(0)). Their C? norms are the same. Therefore we
assume that ¢ (0) = 0 and there is a constant such that |¢ (z)| < C(Jz|A1)|z].
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The key point of the proof

» For simplicity, we assume « < 1 and ¢, (z) = o(z + 07, z). Rewrite
P-f(x) = 7 f(x) = f(z + ¢-(2)) — f(z + ¢-(0)).

> We can let f(x) = f(x + ¢.(0)). Their C? norms are the same. Therefore we
assume that ¢ (0) = 0 and there is a constant such that |¢ (z)| < C(Jz|A1)|z].

» LetI'.(z) = = + ¢.(x). By change of variable, we have
(2:f,9) = (f,2:9),
where
7% 9(w) = det(VoT7 ' (2))g(Is " (2)) — g(a).
» Noticing that
|det(V, T (@) — 1/ < |2, and [T5 () — 2| < CC(la| A D)2,

we complete the proof.
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Lemma 15

Lete € (0,aN1l)and 6 € ((a — 1)V 0,ac A 1).Forany v € (0, — €), there is a
constant C > 0 such that for all j € No and t € (0, T,

t
77| < 02 / (t — 5)~ O/ ()| o ds.

» Recall

t
g7 = / Ajps.i(—) L OYu(s, z)dzds.
o Jrd

Proof.

Let§ = %.We only prove the estimate for & € (1, 2). The case a € (0, 1] is similar
and easier.Since the time variable and y does not play any essential role, below we
drop the time variable and ©} for simplicity of notations. By definition we can make
the following decomposition:

P = dsu + su,
where

,QZ;u(a:):/lz‘@ Z.u(z)v(dz) and su(z) :/‘ Z.u(z)v(dz).

z[>68
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Proof.

. t t _
jf — / <Ajps)t,42f5u>ds+/ <Ajps,ta%u>d5'
0 0

By Lemmal4, we have

[(Ajps,t, Zsu)| < C s 2| 0u(d2)|u(s)l|co B(s, 1),
z|<
where
PB(s,t) Zﬂz |V* A]ps t|) +M1+9(‘V Ajps, t|) N1+9(|VAJpst) 0.
1=0

Leta < 1+ 60 < a+ 5. By crucial lemma, we obtain that

i i
|| @apss sl < [ us)lco B(s, s
0 0
oot ot
5279 [t = 9) Fullords +2-7 [ (¢ = 5)7F Ju()llords,
0 0

where

t . t e .
[ a7 8ipedlutellcods s [ [ 1o EIV Apea@llue)lcods,,
0 0 R4 y




Introduction Main Results Sketch of the proof Future works
00000000 000000 000000000000000000e

Proof.
SO

i

1146 (1V2A5ps,t]) 1140 (| V A5ps )~ [lu(s) | oo ds
0
£—-1-6 [t o o[t o
$27 =510 [ ) Ffu)lcrds <277 [ (0= 9) F ul)lcods:
0 0
For «/su, by Fubini’s theorem and the integration by parts, we have

Aj S,t,giu < Ajps.t(@)||u(x + o(x, 2)) —u(x + 0(0, 2))|dxdz
ool < [ [ 1A @liuGe 0@ 2) ~ (@t o0,2)
/|>5 /Rd iDs,t(x)diveo (.:C,Z)+(O'($,Z)70'(0,2))'vAjpsyt(l')>u($)|d"dZ

< ) lle (#o1spoch + a(FApscl) [ eld)
z|>

By crucial lemma again, we obtain that

t _ . t
/0 (A, )| ds < 2 / (6 = )% [[u(s) loodis.




Introduction Main Results Sketch of the proof Future works
00000000 000000 0000000000000 000000

Future works

» We prove that the solution of SDE driven by cylindrical Lévy process has a den-
sity in Sobolev space H*" with

d

S<Oé—(a_1)\/(1_/8) and T<m,

but this result does not imply that this density is continuous. So how to improve
the index s and how to make r greater are interesting.

» In our work, we only consider the strong Feller property, which only depend on
the distribution of X;°. Moreover, the continuous property of o is enough to
guarantee the existence of weak solution. So how to drop the assumption that o
is Lipschitz is another interesting question.



Thanks for your attention!

o F = E E 9DAC¢
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