Quantitative approximation of kinetic SDEs: from discrete to continuum

Zimo Hao

Joint work with Khoa Lê and Chengcheng Ling

Bielefeld University

17 September 2024

Recent Developments in Dirichlet Form Theory and Related Fields Mathematisches Forschungsinstitut Oberwolfach

Zimo Hao, Khoa Lê, Chengcheng Ling: Quantitative approximation of stochastic kinetic equations: from discrete to continuum. *arXiv:2409.05706*

Kinetic models

Newton's Second Law of Motion:

$$\dot{V}_t = \ddot{X}_t = F(X_t, V_t)$$

► The distribution $\mu_t = \mu_t(dx, dv) := \mathbb{P} \circ (X_t, V_t)^{-1}$ solves the following kinetic equation:

$$\partial_t \mu_t + v \cdot \nabla_x \mu_t + \operatorname{div}_v(F\mu_t) = 0$$

Maxwell 1867; Boltzmann 1872; Vlasov 1938; Landau 1936;

Chapman-Enskog method 1970:

Mesoscopic (Boltzmann equation) and macroscopic (Navier-Stokes equations),, Villani, Lions, Golse, Bouchut, Imbert, Mouhot, Silvestre, Guo, Mourrat, ...

Kinetic models

Newton's Second Law of Motion:

$$\dot{V}_t = \ddot{X}_t = F(X_t, V_t) + \sqrt{2}\dot{B}_t.$$

► The distribution $\mu_t = \mu_t(dx, dv) := \mathbb{P} \circ (X_t, V_t)^{-1}$ solves the following kinetic equation:

$$\partial_t \mu_t + v \cdot \nabla_x \mu_t + \operatorname{div}_v(F\mu_t) = \Delta_v \mu_t.$$

Maxwell 1867; Boltzmann 1872; Vlasov 1938; Landau 1936;

Chapman-Enskog method 1970:

Mesoscopic (Boltzmann equation) and macroscopic (Navier-Stokes equations),, Villani, Lions, Golse, Bouchut, Imbert, Mouhot, Silvestre, Guo, Mourrat, ...

Microscopic (Kinetic SDEs) and mesoscopic (Boltzmann equation): Tanaka 1978, PTRF., Mischler-Mouhot 2013, Invent.,...

Kinetic models

Newton's Second Law of Motion:

$$\dot{V}_t = \ddot{X}_t = F(X_t, V_t) + \sqrt{2}\dot{B}_t.$$

► The distribution $\mu_t = \mu_t(dx, dv) := \mathbb{P} \circ (X_t, V_t)^{-1}$ solves the following kinetic equation:

$$\partial_t \mu_t + v \cdot \nabla_x \mu_t + \operatorname{div}_v(F\mu_t) = \Delta_v \mu_t.$$

Maxwell 1867; Boltzmann 1872; Vlasov 1938; Landau 1936;

Chapman-Enskog method 1970:

Mesoscopic (Boltzmann equation) and macroscopic (Navier-Stokes equations),, Villani, Lions, Golse, Bouchut, Imbert, Mouhot, Silvestre, Guo, Mourrat, ...

- Microscopic (Kinetic SDEs) and mesoscopic (Boltzmann equation): Tanaka 1978, PTRF., Mischler-Mouhot 2013, Invent.,...
- (Difficulty): degenerate parabolic PDE; the transfer of regularity between x and v.

Kinetic SDEs and scaling

► Kinetic SDEs:

$$\begin{cases} \mathrm{d}X_t = V_t \mathrm{d}t, \\ \mathrm{d}V_t = b(X_t, V_t) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

• Scaling (b = 0):

$$(X_{\varepsilon^{2}t}, V_{\varepsilon^{2}t}) = \left(\int_{0}^{\varepsilon^{2}t} B_{s} \mathrm{d}s, B_{\varepsilon^{2}t}\right) = \left(\int_{0}^{t} \varepsilon^{2} B_{\varepsilon^{2}s'} \mathrm{d}s', B_{\varepsilon^{2}t}\right)$$
$$\stackrel{(d)}{=} \left(\varepsilon^{3} \int_{0}^{t} B_{s'} \mathrm{d}s', \varepsilon B_{t}\right) = \left(\varepsilon^{3} X_{t}, \varepsilon V_{t}\right).$$

Kinetic SDEs and scaling

► Kinetic SDEs:

$$\begin{cases} \mathrm{d}X_t = V_t \mathrm{d}t, \\ \mathrm{d}V_t = b(X_t, V_t) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

• Scaling (b = 0):

$$(X_{\varepsilon^{2}t}, V_{\varepsilon^{2}t}) = \left(\int_{0}^{\varepsilon^{2}t} B_{s} \mathrm{d}s, B_{\varepsilon^{2}t}\right) = \left(\int_{0}^{t} \varepsilon^{2} B_{\varepsilon^{2}s'} \mathrm{d}s', B_{\varepsilon^{2}t}\right)$$
$$\stackrel{(d)}{=} \left(\varepsilon^{3} \int_{0}^{t} B_{s'} \mathrm{d}s', \varepsilon B_{t}\right) = \left(\varepsilon^{3} X_{t}, \varepsilon V_{t}\right).$$

Anisotropic scaling: X : V = 3:1.

Kinetic SDEs and scaling

► Kinetic SDEs:

$$\begin{cases} \mathrm{d}X_t = V_t \mathrm{d}t, \\ \mathrm{d}V_t = b(X_t, V_t) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

• Scaling (b = 0):

$$(X_{\varepsilon^{2}t}, V_{\varepsilon^{2}t}) = \left(\int_{0}^{\varepsilon^{2}t} B_{s} \mathrm{d}s, B_{\varepsilon^{2}t}\right) = \left(\int_{0}^{t} \varepsilon^{2} B_{\varepsilon^{2}s'} \mathrm{d}s', B_{\varepsilon^{2}t}\right)$$
$$\stackrel{(d)}{=} \left(\varepsilon^{3} \int_{0}^{t} B_{s'} \mathrm{d}s', \varepsilon B_{t}\right) = \left(\varepsilon^{3} X_{t}, \varepsilon V_{t}\right).$$

- Anisotropic scaling: X : V = 3:1.
- ▶ Heat kernel estimate: (Kolmogorov, 1934): $p_t(x, v) \sim (X_t, V_t)$ with b = 0,

$$p_t(x,v) = (4\pi t^4/3)^{-d/2} \exp\left(-(3|x|^2 + |3x - 2tv|^2)/(4t^3)\right).$$

▷
$$p_t(x, v) = t^{-2d} p_1(t^{-3/2}x, t^{-1/2}v).$$

(Chaudru-Menozzi-Zhang, 2023. Bull. Sci. Math.), ...

• Kinetic SDEs: $V = \dot{X}$,

$$\mathrm{d}\dot{X}_t = b(X_t, \dot{X}_t)\mathrm{d}t + \mathrm{d}B_t.$$

▶ Weak well-posedness [Weak existence + Uniqueness in law]

 $\triangleright \quad \text{(Chaudru de Raynal-Menozzi, 2021. TAMS)} \quad b \in L^q_t L^p_{x,v}, \left| \frac{2}{q} + \frac{4d}{p} < 1 \right|.$

▷ (Ren-Zhang, 2024. Bernoulli) Kato class, $b \in L^q_t L^{p_x}_x L^{p_y}_v$, $\frac{2}{q} + \frac{3d}{p_x} + \frac{d}{p_y} < 1$.

• Kinetic SDEs: $V = \dot{X}$,

$$\mathrm{d}\dot{X}_t = b(X_t, \dot{X}_t)\mathrm{d}t + \mathrm{d}B_t.$$

Weak well-posedness [Weak existence + Uniqueness in law]

▷ (Chaudru de Raynal-Menozzi, 2021. TAMS) $b \in L^q_t L^p_{x,v}, |\frac{2}{q} + \frac{4d}{p} < 1|$

▷ (Ren-Zhang, 2024. Bernoulli) Kato class, $b \in L^q_t L^{p_x}_x L^{p_y}_v$, $\frac{2}{q} + \frac{3d}{p_x} + \frac{d}{p_y} < 1$.

- Strong well-posedness [Strong existence + Pathwise uniqueness]
 - ▷ (Chaudru de Raynal, 2017. AIHP) $b \in C_x^{\frac{2}{3}^+} \cap C_v^{0+}$.
 - ▷ (Wang-Zhang, 2016. SIAM) Dini continuous.
 - ▷ (Fedrizzi-Flandoli-Priola-Vovelle, 2017. EJP) $(1 - \Delta_r)^{\frac{1}{3}+} b \in L_{r,v}^p, p > 6d.$

▷ (Zhang, 2018. Sci. China) $(1 - \Delta_x)^{\frac{1}{3}} b \in L^p_{t,x,v}, \quad \frac{2}{p} + \frac{3d}{p} + \frac{d}{p} < 1$.

• Kinetic SDEs: $V = \dot{X}$,

$$\mathrm{d}\dot{X}_t = b(X_t, \dot{X}_t)\mathrm{d}t + \mathrm{d}B_t.$$

Weak well-posedness [Weak existence + Uniqueness in law]

▷ (Chaudru de Raynal-Menozzi, 2021. TAMS) $b \in L^q_t L^p_{x,v}, |\frac{2}{q} + \frac{4d}{p} < 1|$

▷ (Ren-Zhang, 2024. Bernoulli) Kato class, $b \in L^q_t L^{p_x}_x L^{p_y}_v$, $\frac{2}{q} + \frac{3d}{p_x} + \frac{d}{p_y} < 1$.

- Strong well-posedness [Strong existence + Pathwise uniqueness]
 - ▷ (Chaudru de Raynal, 2017. AIHP) $b \in C_x^{\frac{2}{3}^+} \cap C_v^{0+}$.
 - ▷ (Wang-Zhang, 2016. SIAM) Dini continuous.
 - ▷ (Fedrizzi-Flandoli-Priola-Vovelle, 2017. EJP) $(1 - \Delta_x)^{\frac{1}{3}+} b \in L^p_{x,v}, p > 6d.$

▷ (Zhang, 2018. Sci. China) $(1 - \Delta_x)^{\frac{1}{3}} b \in L^p_{t,x,v}, \quad \frac{2}{p} + \frac{3d}{p} + \frac{d}{p} < 1$.

▷ (Our results) There is some $\beta > 0$,

$$(1+(1-\Delta_x)^{\frac{1}{3}}-\Delta_v)^{\frac{\beta}{2}}(1-\Delta_x)^{\frac{1}{3}}b\in L^{p_x}_x L^{p_y}_v, \quad \frac{3d}{p_x}+\frac{d}{p_v}<1.$$
(H_β)

• Kinetic SDEs: $V = \dot{X}$,

$$\mathrm{d}\dot{X}_t = b(X_t, \dot{X}_t)\mathrm{d}t + \mathrm{d}B_t.$$

Weak well-posedness [Weak existence + Uniqueness in law]

▷ (Chaudru de Raynal-Menozzi, 2021. TAMS) $b \in L^q_t L^p_{x,v}, |\frac{2}{q} + \frac{4d}{p} < 1|$

▷ (Ren-Zhang, 2024. Bernoulli) Kato class, $b \in L^q_t L^{p_x}_x L^{p_y}_v$, $\frac{2}{q} + \frac{3d}{p_x} + \frac{d}{p_y} < 1$.

- Strong well-posedness [Strong existence + Pathwise uniqueness]
 - ▷ (Chaudru de Raynal, 2017. AIHP) $b \in C_x^{\frac{2}{3}^+} \cap C_v^{0+}$.
 - ▷ (Wang-Zhang, 2016. SIAM) Dini continuous.
 - ▷ (Fedrizzi-Flandoli-Priola-Vovelle, 2017. EJP) $(1 - \Delta_r)^{\frac{1}{3}+} b \in L_{r,v}^p, p > 6d.$

▷ (Zhang, 2018. Sci. China) $(1 - \Delta_x)^{\frac{1}{3}} b \in L^p_{t,x,v}, \quad \frac{2}{p} + \frac{3d}{p} + \frac{d}{p} < 1$.

 $\triangleright \quad (\text{Our results}) \text{ There is some } \beta > 0,$

$$(1+(1-\Delta_x)^{\frac{1}{3}}-\Delta_v)^{\frac{\beta}{2}}(1-\Delta_x)^{\frac{1}{3}}b\in L_x^{p_x}L_v^{p_v}, \quad \frac{3d}{p_x}+\frac{d}{p_v}<1. \quad (H_\beta)$$

3/7

- Distribution drift: (H.-Zhang-Zhu-Zhu, 2024. AOP), (Issoglio-Pagliarani-Russo-Trevisani, 2024.) ...
- Lévy processes cases: (Chen-Zhang, 2018. JMPA), (H.-Wu-Zhang, 2020. JMPA), (Marino-Menozzi, 2023. SPA)...

Euler-Maruyama scheme

▶ Let
$$n \in \mathbb{N}$$
 and $k_n(t) := [nt]/n$.

$$\begin{cases} \mathrm{d}X_t^n = V_t^n \mathrm{d}t, \\ \mathrm{d}V_t^n = b(X_{k_n(t)}^n, V_{k_n(t)}^n) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

Euler-Maruyama scheme

• Let
$$n \in \mathbb{N}$$
 and $k_n(t) := [nt]/n$.

$$\begin{cases} \mathrm{d}X_t^n = V_t^n \mathrm{d}t, \\ \mathrm{d}V_t^n = b(X_{k_n(t)}^n, V_{k_n(t)}^n) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

▶ (Lemaire-Menozzi, 2010. EJP) *b* is bounded: Weak convergence: $\mathbb{P} \circ (X^n, V^n)^{-1} \to \mathbb{P} \circ (X, V)^{-1}$, as $n \to \infty$.

Euler-Maruyama scheme

• Let
$$n \in \mathbb{N}$$
 and $k_n(t) := [nt]/n$.

$$\begin{cases} \mathrm{d}X_t^n = V_t^n \mathrm{d}t, \\ \mathrm{d}V_t^n = b(X_{k_n(t)}^n, V_{k_n(t)}^n) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

- ▶ (Lemaire-Menozzi, 2010. EJP) *b* is bounded: Weak convergence: $\mathbb{P} \circ (X^n, V^n)^{-1} \to \mathbb{P} \circ (X, V)^{-1}$, as $n \to \infty$.
- (Leobacher-Szölgyenyi, 2018. Numer. Math.) b is piecewise continuous and bounded:

$$\mathbb{E}\left(\sup_{t\in[0,1]}|(X_t,V_t)-(X_t^n,V_t^n)|\right)\lesssim n^{-\frac{1}{4}+\frac{1}{4}}$$

Tamed Euler-Maruyama scheme with time transport

► Let $\Gamma_t f(x, v) := f(x + tv, v)$ and $b_n := b * \phi_n$, where for a smooth probability density function ϕ and $\theta > 0$,

$$\phi_n(x,v) := n^{4d\theta} \phi(n^{3\theta}x, n^{\theta}v).$$

► Tamed Euler-Maruyama scheme:

$$\begin{cases} \mathrm{d}X_t^n = V_t^n \mathrm{d}t, \\ \mathrm{d}V_t^n = \Gamma_{t-k_n(t)} b_n(X_{k_n(t)}^n, V_{k_n(t)}^n) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

Tamed Euler-Maruyama scheme with time transport

► Let $\Gamma_t f(x, v) := f(x + tv, v)$ and $b_n := b * \phi_n$, where for a smooth probability density function ϕ and $\theta > 0$,

$$\phi_n(x,v) := n^{4d\theta} \phi(n^{3\theta}x, n^{\theta}v).$$

► Tamed Euler-Maruyama scheme:

$$\begin{cases} \mathrm{d}X_t^n = V_t^n \mathrm{d}t, \\ \mathrm{d}V_t^n = \Gamma_{t-k_n(t)} b_n(X_{k_n(t)}^n, V_{k_n(t)}^n) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

► Benefits of adding
$$\Gamma_{t-k_n(t)}$$
:
Let $X_t := \int_0^t B_s ds$ and $f(x, v) = f(x)$ be a Lipschitz function.
▷ (Without $\Gamma_{t-k_n(t)}$): $\mathbb{E}[f(X_t) - f(X_{k_n(t)})] \le ||f||_{Lip} \int_{k_n(t)}^t s^{1/2} ds \lesssim n^{-1}$.

Tamed Euler-Maruyama scheme with time transport

► Let $\Gamma_t f(x, v) := f(x + tv, v)$ and $b_n := b * \phi_n$, where for a smooth probability density function ϕ and $\theta > 0$,

$$\phi_n(x,v) := n^{4d\theta} \phi(n^{3\theta}x, n^{\theta}v).$$

▶ Tamed Euler-Maruyama scheme:

$$\begin{cases} \mathrm{d}X_t^n = V_t^n \mathrm{d}t, \\ \mathrm{d}V_t^n = \Gamma_{t-k_n(t)} b_n(X_{k_n(t)}^n, V_{k_n(t)}^n) \mathrm{d}t + \mathrm{d}B_t. \end{cases}$$

► Benefits of adding $\Gamma_{t-k_n(t)}$: Let $X_t := \int_0^t B_s ds$ and f(x, v) = f(x) be a Lipschitz function. ▷ (Without $\Gamma_{t-k_n(t)}$) : $\mathbb{E}[f(X_t) - f(X_{k_n(t)})] \le ||f||_{Lip} \int_{k_n(t)}^t s^{1/2} ds \lesssim n^{-1}$. ▷ (With $\Gamma_{t-k_n(t)}$) : $\mathbb{E}[f(X_t) - \Gamma_{t-k_n(t)}] \le ||f||_{Lip} \int_{t-k_n(t)}^t \mathbb{E}[W_t - W_{k_n(t)}] ds$

$$\mathbb{E}|f(X_t) - \Gamma_{t-k_n(t)}f(X_{k_n(t)})| \le ||f||_{Lip} \int_{k_n(t)}^t \mathbb{E}|W_s - W_{k_n(s)}|ds| \le \int_{k_n(t)}^t (s - k_n(s))^{1/2} ds \lesssim n^{-3/2}.$$

Main results

• Assume that $b \in L^{p_x}_x L^{p_y}_v$ with

$$\alpha := \frac{3d}{p_x} + \frac{d}{p_v} < 1.$$

Let $\theta \in (0, \frac{1}{2\alpha})$.

Theorem 1

Weak convergence:

$$\int_0^1 \|\mathbb{P} \circ (X_t, V_t)^{-1} - \mathbb{P} \circ (X_t^n, V_t^n)^{-1}\|_{\text{var}} dt \lesssim n^{-\frac{1}{2}} + n^{-\theta}.$$

Strong convergence: Under the condition (H_{β}) ,

$$\mathbb{E}\left[\sup_{t\in[0,1]}|(X_t,V_t)-(X^n_t,V^n_t)|\right]\lesssim n^{-\frac{1+\beta/3}{2}+\varepsilon}+n^{-(\beta+1-\alpha)\theta+\varepsilon},\quad\forall\varepsilon>0.$$

• When b is bounded, we can replace b_n with b and let $\theta = +\infty$.

Main results

▶ Assume that $b \in L^{p_x}_x L^{p_v}_v$ with

$$\alpha := \frac{3d}{p_x} + \frac{d}{p_v} < 1.$$

Let $\theta \in (0, \frac{1}{2\alpha})$.

Theorem 1

Weak convergence:

$$\int_0^1 \|\mathbb{P} \circ (X_t, V_t)^{-1} - \mathbb{P} \circ (X_t^n, V_t^n)^{-1}\|_{\text{var}} dt \lesssim n^{-\frac{1}{2}} + n^{-\theta}.$$

Strong convergence: Under the condition (H_{β}) ,

$$\mathbb{E}\left[\sup_{t\in[0,1]}|(X_t,V_t)-(X_t^n,V_t^n)|\right]\lesssim n^{-\frac{1+\beta/3}{2}+\varepsilon}+n^{-(\beta+1-\alpha)\theta+\varepsilon},\quad\forall\varepsilon>0.$$

- When b is bounded, we can replace b_n with b and let $\theta = +\infty$.
- ▶ The key point in the proof: Littlewood-Paley's type estimate for the heat kernel.
- Difficulty: $p_t * p_s \neq p_{t+s}$; $p_t * (\Gamma_s p_s) = \Gamma_s p_{t+s}$.

Remarks:

- (i) We don't need any continuous assumption on b.
- (ii) In contrast to (Jourdain-Menozzi, 2024. AAP) for $b \in L^p$ and

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t,\tag{1}$$

$$\|\mathbb{P}\circ (X_t)^{-1}-\mathbb{P}\circ (X_t^n)^{-1}\|_{\mathrm{var}}\lesssim n^{-rac{1-d/p}{2}},$$

our weak convergence rate is 1/2 when $\theta \in [1/2, 1/(2\alpha)]$, which is independent of (p_x, p_y) .

(iii) The strong convergence rate is 1/2 when $\alpha < 1/2$ and $\theta \in (1/(2(1-\alpha)), 1/(2\alpha))$, which coincides the results in (Lê-Ling, 2021) for SDE (1).

Remarks:

- (i) We don't need any continuous assumption on b.
- (ii) In contrast to (Jourdain-Menozzi, 2024. AAP) for $b \in L^p$ and

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t,\tag{1}$$

$$\|\mathbb{P}\circ(X_t)^{-1}-\mathbb{P}\circ(X_t^n)^{-1}\|_{\mathrm{var}}\lesssim n^{-\frac{1-d/p}{2}},$$

our weak convergence rate is 1/2 when $\theta \in [1/2, 1/(2\alpha))$, which is independent of (p_x, p_y) .

(iii) The strong convergence rate is 1/2 when $\alpha < 1/2$ and $\theta \in (1/(2(1-\alpha)), 1/(2\alpha))$, which coincides the results in (Lê-Ling, 2021) for SDE (1).

Open questions:

- (i) Is the convergence rate 1/2 optimal (especially for the weak case)? (Ellinger-Müller-Gronbach-Yaroslavtseva 2024)
- (ii) When b(x, v) = b(x), would it be possible to improve the convergence rate from $\frac{1}{2}$ to $\frac{3/2}{2}(=3/4)$?

Remarks:

- (i) We don't need any continuous assumption on *b*.
- (ii) In contrast to (Jourdain-Menozzi, 2024. AAP) for $b \in L^p$ and

$$\mathrm{d}X_t = b(X_t)\mathrm{d}t + \mathrm{d}W_t,\tag{1}$$

$$\|\mathbb{P}\circ(X_t)^{-1}-\mathbb{P}\circ(X_t^n)^{-1}\|_{\mathrm{var}}\lesssim n^{-\frac{1-d/p}{2}},$$

our weak convergence rate is 1/2 when $\theta \in [1/2, 1/(2\alpha)]$, which is independent of (p_x, p_y) .

(iii) The strong convergence rate is 1/2 when $\alpha < 1/2$ and $\theta \in (1/(2(1-\alpha)), 1/(2\alpha))$, which coincides the results in (Lê-Ling, 2021) for SDE (1).

Open questions:

- (i) Is the convergence rate 1/2 optimal (especially for the weak case)? (Ellinger-Müller-Gronbach-Yaroslavtseva 2024)
- (ii) When b(x, v) = b(x), would it be possible to improve the convergence rate from $\frac{1}{2}$ to $\frac{3/2}{2}(=3/4)$?

Thank you!