SDEs with supercritical distribution drifts

Zimo Hao

Bielefeld University

Joint work with Xicheng Zhang

12 March 2024

Non-local operators, probability and singularities

1/30



Table of contents

SDE with singular drifts

Weak well-posedness of subcritical SDEs

Weak solutions to supercritical SDEs

1/30



SDE with singular drifts

2/30



Overview

» Consider the following SDE
dX, = b(1, X,)dr + V2dW,, )

where (W;);>o is a standard d-dimensional Brownian motion and b : Ry X
R? — R? is a measurable function.
> Weak solution: (2, #,P, (F;)s>0, W, X);
Strong solution: (€2, %, P, (F);>0, W) = X = ®(Xo, W);
Maringale solution: P € P(Cr), for all f € C2(R?)

vV Vv

1
fwr) = fwo) — / (A4b-V)f(ws)ds is a P-martingale;
0
> Path-by-path solution: for any path  — W;(w), the solution solves the ODE (1).
> Uniqueness in law; Pathwise uniqueness; Path-by-path uniqueness.

» Regularization by noise.
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> (Stroock-Varadhan): Weak solution <= Martingale solution;

> (Barlow): Uniqueness in law - Existence of strong solution.

> (Shaposhnikov-Wresch, Anzeletti): Many counterexamples.
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SDEs and PDEs

B Consider the following SDE:

X i(x) =x+ fstb(r,Xs’,(x))dr +V2(W, — Wy);

B Forward Fokker-Planck equation (FPE):

Outts = Dpusy — div(b(t) i), Hs,s = O3

B Backward Fokker-Planck-Kolmogorov equation (BKE):

Ostts s + Augy +b(s) - Vug, +f =0, u; = .
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SDEs and PDEs

ug (x) = Ep(X 1(x)) + Efstf(r,Xw)dr

1t6’s formula to | r — ur,¢(Xs,(x))

X1 (x)

1t6’s formula to | » — ¢(Xs,-(x)) |for any ¢ € C?

P o (X,,(x))~! satisfies (FPE)
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What can we say if b is not a function?

» Brox diffusion (white noise); Other noises.

» b = VU with some Holder potential;

» (Weak solution): X, = Xj —|—Aﬁ7 + W,, where
t

Al = lim [ bu(s,X,)ds exists.

n—oo o
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What can we say if b is not a function?

» Brox diffusion (white noise); Other noises.

v

b = VU with some Holder potential;
(Weak solution): X; = Xo + Af + W,, where

v

t

Al = lim [ bu(s,X,)ds exists.

n—oo o

v

(Martingale solution):
> Forany f € Cp(R4 x RY), consider the related BKE

Ou+Au+b-Vut+f=0, u(T)=0.
We call P € #(Cr) a martingale solution if

t
u(t,wr) — u(t,wo) — / f(ryw,)dr is a P-martingale.
0

> N. Ethier and G. Kurtz. Markov Processes: Characterization and Convergence. Wiley series in probability and

mathematical statistic. Wiley, 1986.
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Scale analysis

» Let I:I,‘,1 be the homogenous Bessel potential space, where « < 0and p € [1, o]
and suppose for some ¢ € [1, 0]

be /(R HY),
and SDE (1) admits a solution denoted by X. For A > 0, we define
X =A""Xy, W= AWy, bM1,x) = Ab(N1 ).
» Then we have
dx) = b (6, XM dt + V2dW),
where
d

_ )\H»(yf;?

A _2
o HM(RJr;H;;) "||b||Lq(R+;H3)~

» As A — 0,
Subcritical: [‘{ + 2 <140
Critical: § + > = 1 + o

Supercritical: ;—f 4F 2 > 14 a.
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A well-defined restriction on «

» Consider the related PDE:
ou=Au+b-Vu+f.

» Assume b € C* with the differentiability index o < 0.
» By the Schauder theory, u is at most in C>+.

» To make the product b - Vu meaningful, we need to stipulate that
1 4+ 2« > 0, which implies o > —%.
> (Delarue-Diel 2016) rough path
& (Cannizzaro-Chouk 2018) paracontrolled calculus: b € C2/3+
is some Gaussian noise.
> (Question) Arbitrary function b? o« — —1?
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Well-known results

SEU: Strong existence-uniqueness; WEU: Weak existence-uniqueness;
WE: Weak existence; EUP: Existence-uniqueness of path-by-path solution.

Value of o Subcritical | Critical | Supercritical
seu: VI KR, 20510 WEU&SEU: BEGM!Y, K2! |
_ (11> 7121 7(3.4] l7J [8]
a=0 We: ZZ]
Eup: D‘[JZ] ALLfg] M,KM[ 0]
7
ael-3,0 | weuscll R .22], | - | -
acind | - | - -
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Zvonkin’s transformation- a method to kill the drift

» Consider the following BKE:
P +AP+bH-VO =0, O(T,x)=x,

where @ : R x RY — R?. We assume that if we can use Ito’s
formula to s — ®(s, X;) and then

dd(1, X,) = V2V (1, X, )dW,.

» We assume that ®(t, -) is an C!-diffeomorphism.

» We define (¥;);>0 := (®(7,X;))r>0 and note that (Y;);>0 satisfies
the SDE without drift.
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Weak well-posedness of subcritical SDEs
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Weak well-posedness of subcritical SDEs
witha € (=1, —1)
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Main results
(H™) Let (a,p,q) € (=1, —3] x [2,00)* with § + 2 < 1 + c. Suppose that

b b .
Ky = ||bH1L‘;B,g§q <oo and k= |\d1vb\|L;B;;;(?_l) < 0.

Theorem 1 (H.-Zhang 2023)

Under the condition (H**®), there is a unique weak solution to SDE
(1). Moreover, t — AY has finite p-variation with some p < 2.
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Main results
(H™) Let (a,p,q) € (=1, —3] x [2,00)* with § + 2 < 1 + c. Suppose that

b b .
Ky = ||bH1L‘;B,g§q <oo and k= |\d1vb\|L;B;;;(?_l) < 0.

Theorem 1 (H.-Zhang 2023)

Under the condition (H**®), there is a unique weak solution to SDE
(1). Moreover, t — AY has finite p-variation with some p < 2.

» Suppose thatb € I[,‘;B[:]U2 with % + % < 1. Then (H™) holds for a = —1.
Moreover, when divb = 0, (H*"®) holds.
» For any Lipschitz function g : RY — R,

t
/ g(X;)dA” is a Young integral.
0
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Example:Gaussian noises

» For given v € (d — 2,d), we define the Gaussian noise b by the
following covariance

=9

W)d&.

B (b(e) = [ FEO-0l€ (Taa -
» Then we have for almost surely w

b(w,-) € Npelt,o0)B, of (RY)  divb(w) = 0.

p,loc
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Sketch of the proof

» Consider the following BKE:
Ou+ Autb-Vu+f=0, u(T)=0, rel0,T].
beC” ueCt,

» Wedefineb- Vu:= b ® Vu+ divb o u + divb < u where

‘b@Vu::div(b<u+bou)+b>Vu.‘

» The paraproduct implies that
ldivb o u + divh < ullo < ||divd||—2—allull2+a
and

16 © Valla S 16 < u+boulli+ [Iblla]| Vull~

~

S 1blla el + [ Valliz) < 1bllellull2+a-
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ldivb o u + divh < ullo < ||divd||—2—allull2+a
and

16 © Valla S 16 < u+boulli+ [Iblla]| Vull~

S 1blla el + [ Valliz) < 1bllellull2+a-

» Therefore, we have u € C*** and

lim sup IVu(t) — Vu(s)||L~ = 0.

0—=0 |1—5<5,1,5€[0,T]

» Zvonkin’s transformation: taking f = b and ®,(x) := x + u(z, x).
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Weak solutions to supercritical SDEs
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Weak solutions to supercritical SDEs
with a = —1
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The setting

» Weassume d > 2, b € L{H, ' withp,q € [2, 0],

d 2
-+ -<1, divb=0.
P q
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The setting

» Weassume d > 2, b € L{H, ' withp,q € [2, 0],

d 2
-+ -<1, divb=0.
P q

» Let b, € C°(Ry x RY) with lim,—,o0 [|by — b|45—1 = 0 and
THp
consider the following approximating SDE

t
X' =X + / ba(s,X")ds + V2W;.
0

» We denote the distribution of (X),c(o,7) by P, € P(C([0, T]; RY)).
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Main results
Theorem 2 (H.-Zhang 2023)

i) For any F measurable random variable Xo, {P,}52, is tight in @(C([0, T]; R?)).

ii) Moreover, if the distribution of Xo has an L? density w.r.t. the Lebesgue measure,
then there is a continuous process (X),c(0,7] such that
t

X, =Xo+ lim [ bu(r,X,)dr + V2W,,

n—oo 0

where the limit here is taken in L*(Q).

iii) Let P be the law of the solution (X;),c(0,7). The following almost surely Markov
property holds: there is a Lebesgue zero set A C (0, T) such that for all
s €[0,T)\AN

Eplf(w)| %] = Ep[f(wi)|ws], 0<s<t<T, feCyR.

v)When b € L*([0,T] x RY) orb € L?"B;ol’2 (critical & ill-defined), there is only

one accumulation point of {Py}52. That is for any b, — b, P, converges to the
distribution of (X:):c[o,]-
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Example: Particle system with singular kernels

» Consider the following singular interaction particle system in R
dXT =) K (X = XYY+ V2w, i=1,- N, (2)
J#

where K € Hy! (Rd; Rd) is divergence free, W¥ii=1,--- Nare N-independent
standard d-dimensional Brownian motions, 7; € R and initial value has an L*-
density.

» (Jabin-Wang 2018) Existence of the related FPE and propagation of chaos. (The
existence of a solution to the SDE (2) appears to be open).

» As aresult, we have the weak existence to the N-particle system SDE (2).
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Example: GFF and super-diffusive

» Letd =2,¢ € (0,1] and b. be a Gaussian field with

B hete) = [ FOR0) (fona = e

€17
» Whene — 0, b := lim. b. formally satisfies
b:=V"E = (—8,6,0,&) € CT'™ divb =0,
where £ = £(x) is the two-dimensional Gaussian Free Field (GFF)
» (Super-diftusive)
Whene = 1, E|X,|> < tv/Int
(Cannizzaro-HaunschmidSibitz-Toninelli 2022)
(Chatzigeorgiou-Morfe-Otto-Wang 2022).
» Foranyp € (2,00)
sup 1 <00, a.s.
e<1/2 ” vV ln HHp loc
By our results, one sees that the solutions {X; }(o,7) to the following approxima-
tion SDE:s is tight

. bo(XF)
dxs = dr + v2dw..
" Vne '
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Sketch of the proof— Tightness

» Consider the following backward PDE
Ou+Au+b-Vu+f=0, uT)=0 (PDE)

and the following approximation PDEs
Ottn + Atty + by - Vuy, +f =0, u(T)=0 (APDE)

» Under the condition (H""), by De Giorgi’s method in (Zhang-Zhao 2021), we
have

sup ([[unl[oo + [[Vian][2) < oo,
n

which implies the there is a weak solution u to (PDE).

» (Problem): Since we don’t know whether (u,b - Vu) = 0 holds a priority, we
don’t have the uniqueness of (PDE).
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» Consider the following backward PDE
Ou+Au+b-Vu+f=0, uT)=0 (PDE)

and the following approximation PDEs
Ottn + Atty + by - Vuy, +f =0, u(T)=0 (APDE)

» Under the condition (H""), by De Giorgi’s method in (Zhang-Zhao 2021), we
have

sup ([[unl[oo + [[Vian][2) < oo,
n

which implies the there is a weak solution u to (PDE).

» (Problem): Since we don’t know whether (u,b - Vu) = 0 holds a priority, we
don’t have the uniqueness of (PDE).
» By It6’s formula,

T
sup ’E/ f(r,Xf)dr’ <Htnlloo S fllag=1  (Ist Krylov estimate).
n 0 THp
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Sketch of the proof— Tightness

» By Aldous’ criterion of tightness and the strong Markov property, we only need
to show

lim sup supsup E|X; (x0) — xo| = 0.
éﬁoxoeRd TS n
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Sketch of the proof— Tightness

» By Aldous’ criterion of tightness and the strong Markov property, we only need
to show
lim sup supsupE|X7 (xo) — x| = 0.

5—>OXOeRd <5 n

» Fix e € (0, 1). Define

he(x) == /22 + |x — x0?, |Vhe| < C, |V?he| < Ce™".
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Sketch of the proof— Tightness

» By Aldous’ criterion of tightness and the strong Markov property, we only need
to show
lim sup supsupE|X7 (xo) — x| = 0.

5—>OXOE]R,1 <5 n

» Fix e € (0, 1). Define

he(x) == /22 + |x — x0?, |Vhe| < C, |V?he| < Ce™".

» By It6’s formula, we have
E[X] — x| <Eh.(X7) =c¢+E (/ (A + bu(s) - V)hs(X.?)ds>
0

Sedde + ‘E (/ (bu - Vhi)(s,Xf)ds) ‘
0

IstKE

< e+ 6571 + ”bn : thH]LgH,T] (5 Hb”

~

L"/‘,Hlj 1 HVhE H(Z}y)

5€+5571 +||b||]L?SHP_] —0

asd — O0ande — 0.
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Sketch of the proof— Weak existence

» Tightness + Skorokhod’s representation theorem =- limit process (X;),c[o,7]-
> What we need : lim, 00 SUp,,>, E| [ (b — bu) (s, X,)ds| = 0.
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» The second Krylov type estimate:

supl 2] fsupE'/st

< Wl
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Sketch of the proof— Weak existence

» Tightness + Skorokhod’s representation theorem =- limit process (X;),c[o,7]-
> What we need : lim, 00 SUp,,>, E| [ (b — bu) (s, X,)ds| = 0.
» The second Krylov type estimate:

supl 2] fsupE'/st

< Wl

> Recall the following approximation BKE
Osttn + Aty + by - Vu, +f =0, u(t) =0
and consider the following FPE
Ospn = Apy — div(bnpn).

> By the representation of the solution to BKE,

L(f) =2E /Ot /If(&Xf)f(r,Xf)drds

-2 | (s, XE { / 1o, Xf)dr} ds
=28 [ 105, X X005 =2 [ 6)un(5) (51

2
< WHL;H;l H”nHL,OOLZmL%,H;HPnHLE;OLZmL%H; < WHLt;Hﬁ—l llpoll2. 26/30



Sketch of the proof—-Markov property

» Idea: obtain the uniqueness martingale solution.

Definition 3 (Martingale solution)
Let € P(R?). We call a probability measure P € #(Cr) a martingale solution of
SDE (1) starting from p, if P o (wy) ™" = p and for any f € C2°([0, T] x RY),
t
M= u(t,wr) — u(0,wo) — / f(ryw,)dr, w. € Cr,
0

is a martingale under P with respect to the natural filtration %;.
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» Problem: There is no uniqueness to (PDE).

» We couldn’t show the existence of a solution to the martingale solution such that
the definition holds for all solutions u.
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Sketch of the proof—-Markov property
» Idea: obtain the uniqueness martingale solution.
Definition 3 (Martingale solution)

Let € P(R?). We call a probability measure P € #(Cr) a martingale solution of
SDE (1) starting from p, if P o (wy) ™" = p and for any f € C2°([0, T] x RY),

t
M= u(t,w;) — u(0,w) — / f(ryw,)dr, w. € Cr,
0

is a martingale under P with respect to the natural filtration %;.

» Problem: There is no uniqueness to (PDE).

» We couldn’t show the existence of a solution to the martingale solution such that
the definition holds for all solutions u.

» We can find a bounded linear operator

S L{H, ' — L{°L™ N LTH)

such that for any f, u = 8f solves (PDE).

—1

oo.2> We have the uniqueness and stability for (PDE), which implies

> Onceb € LB
the uniqueness of the operator &§.
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Sketch of the proof—-Markov property
Definition 4 (Generalized martingale solution)
Let 1 € P(R?). We call a probability measure P € #(Cr) a generalized martingale

solution of SDE (1) starting from p and associated with the operator &, if
Po (wo)~" = pand forany f € C([0, T] x R?),

t
M = Sy (t,r) — /(0 w0) — / Fr,w)dr, w. € Cr,
0

is a martingale under P with respect to the natural filtration ;.
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Sketch of the proof—-Markov property

Definition 4 (Generalized martingale solution)

Let 1 € P(R?). We call a probability measure P € #(Cr) a generalized martingale
solution of SDE (1) starting from p and associated with the operator &, if
Po (wo)~" = pand forany f € C([0, T] x R?),

t
M = Sy (t,r) — /(0 w0) — / Fr,w)dr, w. € Cr,
0

is a martingale under P with respect to the natural filtration ;.

Theorem 3 (H.-Zhang 2023)

Assume g has an L density w.r.t. the Lebesgue measure. There is a unique
generalized martingale solution w.r.t. the &.

» We can find a subsequence {n;};2; such that u,, — Sf (& depends on this
subsequence). Then the law of a weak solution is just a generalized martingale
solution. The Markov property follows from the definition of the generalized
martingale solution.
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Further works

» Uniqueness in the supercritical cases (Counterexample by Zhao
(2019)).

» Characterize the limit of the approximation solutions to the SDEs
with drift b = V' GFF.
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Thank you!



	SDE with singular drifts
	Weak well-posedness of subcritical SDEs
	Weak solutions to supercritical SDEs

