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Part 1 : Introduction and our questions
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α-stable processes

I Fix α ∈ (0, 2). Let Lαt be an α-stable process with Lévy measure and να with
the following form:

να(dy) := drµ(dω)
r1+α , y = rω,

where µ is a finite measure on the unit sphere Sd−1.

I Lαt has the following scaling property:

(λ1/αLλt)t>0
(d)= (Lt)t>0.

I We call Lαt being non-degenerate if the Lévy measure να is nondegenerate in the
following sense:

ˆ
Sd−1
| ω0 · ω | µ(dω) 6= 0, ∀ω0 ∈ Sd−1. (1.1)
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α-stable processes

I It is easy to verify that for any β1 < α < β2, positive number λ and positive
measurable function f ,

ˆ
Rd

(
|y|β1 ∧ |y|β2

)
να(dy) <∞,

ˆ
Rd
f(λy)να(dy) = λα

ˆ
Rd
f(y)να(dy).

I By Lévy-Khintchine formula, we have

E(exp[iLαt ξ]) = etψ(ξ)

where
ψ(ξ) :=

ˆ
Rd

(eiξ·z − 1− iξ · z1|z|<1)να(dz).
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Example 1

When µ is Lebesgue measure of Sd−1,

να(dz) = |z|−d−αdz, ψ(ξ) = −c|ξ|α ∈ C∞(Rd\{0}).

We call this process the standard d-dim α-stable process.

Example 2
When

µ =
d∑
i=1

δei ,

where {ei}di=1 is a basis of Rd with ei = (0, ..1(ith), .., 0). It is the Lévy measure of
process (L1

t , L
2
t , ..., L

d
t ), where {Lit}di=1 are i.i.d. standard 1-dim α-stable processes.

ψ(ξ) = −c
d∑
i=1

|ξi|α ∈ C∞(Rd\ ∪di=1 Rd−1
i ),

where Rd−1
i := {ξi = 0}.

We call this process the cylindrical α-stable process.



Introduction Main Results Sketch of the proof Future works

Example 1

When µ is Lebesgue measure of Sd−1,

να(dz) = |z|−d−αdz, ψ(ξ) = −c|ξ|α ∈ C∞(Rd\{0}).

We call this process the standard d-dim α-stable process.

Example 2
When

µ =
d∑
i=1

δei ,

where {ei}di=1 is a basis of Rd with ei = (0, ..1(ith), .., 0). It is the Lévy measure of
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SDE driven by cylindrical α-stable process

Consider the following SDE driven by the Lévy process Lνα ,{
dXx

t =
´
Rd σ(Xt−, z)Ñ (dt, dz) + b(Xt)dt,

Xx
0 = x,

(1.2)

where σ = (σi)di=1 : Rd × Rd → Rd, b = (bk)dk=1 : Rd → Rd, N(dt,dz) is the
Poisson random measure of Lαt and

Ñ(dt,dz) := N(dt,dz)− dtνα(dz).

Example 3

When Lαt is a cylindrical α-stable process with α < 1, the infinitesimal generator of
Xx
t is L α

c ,

L α
c f(x) =

d∑
i=1

ˆ
R

f(x+ σi(x, z))− f(x)
|z|1+α dz.
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Questions

I In what condition of σ and b, there is a weak(or strong) solution of SDE (1.2)?

I If there is a weak solution, does the solution have (strong) Feller property?

I If the solution has (strong) Feller property, can we get the precise estimate?
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Assumptions

(Hσ
s ) σ(x, z) = A(x)z for some matrix value map A = (ai,j) Rd → Rd ⊗ Rd, there

is a positive number c0 such that for any x, y, ξ ∈ Rd and all i, j = 1, ..., d

c−1
0 |ξ| 6 |ξ ·A(x)ξ| 6 c0|ξ|, (1.3)

|ai,j(x)− ai,j(y)| 6 c0|x− y|. (1.4)

(Hb
β) For β ∈ (0, 1),

sup
0<|x−y|61

|b(x)− b(y)|
|x− y|β <∞. (1.5)

I Notice that condition (Hb
β1 ) implies (Hb

β2 ) if β1 > β2 and b(x) = x satisfies
(1.5) for all β ∈ (0, 1).

I We always assume that there is a weak solution Xx
t of SDE (1.2) and define

Pσ,bt ψ(x) = E(ψ(Xx
t )), Pσt := Pσ,0t .
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Well-known results

2006 (Bass-Chen)
There is a weak solution Xx

t of (1.2) when σ is continuous, b ≡ 0 and Lνt is a
cylindrical α-stable process.

2010 (Bass-Chen)
Assume σ(x, z) = σ(x)z is continuous in variable x, b ≡ 0 and Lνt is a cylin-
drical α-stable process. If any bounded function h satisfies

h(x) = E[h(Xx
τD )] for every x ∈ D

for some bounded domain D, then h is Hölder continuous in D.

2017 (Chen-Zhang-Zhao)
Under the condition (Hσ

s ) and (Hb
β) with β ∈ (1− α

2 , 1), there is a unique strong
solution of (1.2).
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Well-known results

2018 (Kulczycki-Ryznar-Sztonyk)
Assume b ≡ 0 and Lνt is a cylindrical α-stable process with α ∈ (0, 1). Under
the condition (Hσ

s ), for any γ ∈ (0, α), T > 0, there is a constant C such that
for all t ∈ (0, T ], x, y ∈ Rd and f ∈ L∞(Rd)

|Pσt f(x)− Pσt f(y)| 6 C|x− y|γt−
γ
α ‖f‖L∞ . (1.6)

For any γ ∈ (0, α
d

), T > 0, there is a constant C such that for all t ∈ (0, T ],
x ∈ Rd and f ∈ L∞(Rd) ∩ L1(Rd)

|Pσt f(x)| 6 Ct−
γd
α ‖f‖1−γ

L∞ ‖f‖
γ

L1 . (1.7)
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Part 2: Our main results
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Littlewood-Paley decomposition and Besov space

I Let φ0 be a radial C∞-function on Rd with
φ0(ξ) = 1 for ξ ∈ B1 and φ0(ξ) = 0 for ξ /∈ B2.

I For ξ = (ξ1, · · · , ξn) ∈ Rd and j ∈ N, define

φj(ξ) := φ0(2−jξ)− φ0(2−(j−1)ξ).
I It is easy to see that for j ∈ N, φj(ξ) = φ1(2−(j−1)ξ) > 0 and

suppφj ⊂ B2j+1 \B2j−1 ,

k∑
j=0

φj(ξ) = φ0(2−kξ)→ 1, k →∞.

Definition 4 ( Besov spaces)

For given j ∈ N0, the block operator ∆j is defined on S ′ by

∆jf(x) := (φj f̂ )̌ (x) = φ̌j ∗ f(x) = 2·m(j−1)
ˆ
Rd
φ̌1(2(j−1)y)f(x− y)dy.

For any s ∈ R and p ∈ [1,∞], the Besov space Bsp,∞ is defined by

Bsp,∞(Rd) :=
{
f ∈ S ′(Rd) : ‖f‖Bsp,∞ := sup

j>0

(
2sj‖∆jf‖Lp

)
<∞

}
.
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The Propositions of Besov Space

Proposition 5

For any s1 > 0 and s2 > 0 with s2 /∈ N,

Hs1,p(Rd) ⊂ Bs1
p,∞(Rd) and Cs2 (Rd) = Bs2

∞,∞(Rd),

For any n ∈ N,
Cn(Rd) ⊂ Bn∞,∞(Rd).

I For j ∈ N0, by definition it is easy to see that

∆j = ∆j∆̃j , where ∆̃j := ∆j−1 + ∆j + ∆j+1 with ∆−1 ≡ 0, (2.1)

and ∆j is symmetric in the sense that

〈∆jf, g〉 = 〈f,∆jg〉.

I The cut-off low frequency operator Sk is defined by

Skf :=
k−1∑
j=0

∆jf = 2dk
ˆ
Rd
φ̌0(2k(x− y))f(y)dy → f. (2.2)
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Our assumption for σ

(Hσ
µ) There is a constant c0 > 1 such that for all x, y, z ∈ Rd and all λ > 0

inf
ω∈Sd−1

inf
λ>0

λ

ˆ
Sd−1
|ω · σ(x, z

λ
)|µ(dz) > c−1

0 , (2.3)

|σ(x, z)− σ(y, z)| 6 c0|x− y||z|.

c−1
0 |z| 6 |σ(x, z)| 6 c0|z|.

Remark 6

I Notice that condition Hσ
s implies condition Hσ

µ here.

I σ(x, z) = (2 + sinz1)z satisfies condition Hσ
µ but not satisfies condition Hσ

s .
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Main Results

Theorem 7 (Gradient estimate for SDE solution)

Assume one of the following conditions holds,
I α ∈ (0, 2), b ≡ 0 and let β = 1.

I α ∈ ( 1
2 , 2) and condition (Hb

β) holds with β ∈ ((1− α) ∨ 0, α).

Under condition (Hσ
µ), for any

γ1 ∈ [0, α+ α ∧ β), ( d
p
− γ2) ∈

(
− γ1, α− (α− 1) ∧ (1− β)

)
,

there is a constant CT such that for all φ ∈ C∞0 (Rd) and all t ∈ (0, T ],

‖Pσ,bt φ‖Bγ1
∞,∞

6 CT t
− 1
α

(
d
p
−γ2+γ1

)
‖φ‖Bγ2

p,∞
. (2.4)

In particular, when α > 1
2 , we obtain the gradient estimate,

‖∇Pσ,bt φ‖∞ 6 CT t
− 1
α ‖φ‖∞.
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Main Results

I If taking γ2 = 0 and p1 =∞, we get a corollary directly.

Corollary 8
Assume one of the following conditions holds,
I α ∈ (0, 2), b ≡ 0 and let β = 1.

I α ∈ ( 1
2 , 2) and condition (Hbβ ) holds with β ∈ ((1− α) ∨ 0, α).

Under condition (Hσ
µ), for any γ ∈ [0, α + α ∧ β), there is a constant CT such that

for all φ ∈ L∞(Rd) and all t ∈ (0, T ],

‖Pσ,bt φ‖Cγ 6 CT t
− γ
α ‖φ‖L∞ . (2.5)

I Notice that (2.5) reduced the restriction of the γ in (1.6)
from (0, α) to (0, α+α∧β). In particular, we have gradient estimate. Moreover,
we can deal with the case α > 1.

I By a way of interpolation, we also get (1.7) from Theorem7.
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Main Results

I By the dual space theorem, we get the existence of density:

Corollary 9

Fix any 0 6 s < t, there is a function pσ,bs,t : Rd × Rd → R, for any x ∈ Rd

pσ,bs,t (x, ·) ∈ ∩(s,r)∈IH
s,q(Rd)

where Hs,q is the Sobolev space and

I =
{

(s, r) | s < α− (α− 1) ∨ (1− β), q ∈ [1, d
d−α+s+(α−1)∨(β−1) )

}
⊂ [0,∞]× [1,∞],

such that all φ ∈ C∞0 (Rd),

Pσ,bt φ(x) =
ˆ
Rd
pσ,bt (x, y)φ(y)dy.
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Crucial lemma

I Let θ : R+ → Rd is a measurable function and ps,t be the transition probability
of process

Zs,t :=
ˆ t

s

ˆ
Rd
σ(θ(r), z)Ñ(dz, dr).

Lemma 10 (Crucial Lemma)

I For any β ∈ [0, α), γ ∈ [0,+∞) and T > 0, there is a constants C such that
for m ∈ N0 all j > 0, f ∈ L1

loc(R+) and t ∈ (0, T ] s ∈ [0, t),ˆ t

0

ˆ
Rd
|x|β |∇m∆jps,t(x)||f(s)|dxds 6 C2(m−γ−β)j

ˆ t

0
(t− s)−

γ
α |f(s)|ds.

I For any m ∈ N0, q ∈ [1,∞], 1
p

+ 1
q

= 1 and γ ∈ [0,+∞), there is a constant
C such that for all (t− s) ∈ (0, T ],

‖∇m∆jps,t‖Lq(Rd) 6 C(t− s)−
1
α

(γ−m+ d
p

)2−γj .
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The key point of proof

I For simplify, we assume σ(x, z) = A(x)z for some matrix value mapA : Rd →
Rd ⊗ Rd and a(t) := A(θ(t)). Recall that ps,t is the transition probability of

Zs,t =
ˆ t

s

a(r)dLαt with λ
1
αLαλt

(d)= Lαt .

Therefore using the change of variable and the scaling property, we haveˆ t

s

a(r)dLαr =
ˆ t−s

0
a(r + s)d

(
Lαr+s − Lαs

)
(d)= (t− s)−

1
α

ˆ 1

0
a(r(t− s) + s)dLαr .

We denote by p̄0,1 the density of
´ 1

0 a(r(t− s) + s)dLαr , then

ps,t(x) = (t− s)−
d
α p̄0,1((t− s)−

1
α x).

I Condition

inf
ω∈Sd−1

inf
λ>0

λ

ˆ
Sd−1
|ω · σ(x, z

λ
)|µ(dz) > c−1

0 (3.1)

guarantee that for any n ∈ N0 and β ∈ [0, α), there is a constant C such thatˆ
Rd
|x|β |∇np̄0,1(x)|dx 6 C.
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PDE related to SDE

I Recall that Xx
t is the weak solution of SDE{

dXx
t =
´
Rd σ(Xt−, z)Ñ(dt,dz) + b(Xt)dt,

Xx
0 = x.

I We let u(t, x) ∈ C([0, T ];Cα+ε(Rd)∩C1+ε(Rd)) for some ε > 0 be a solution
of following PDE,{

∂tu(t, x) = L α
σ u(t, x) + b(x) · ∇u(t, x),

u(0, x) = φ(x),
(3.2)

where

L α
σ u(t, x) =

ˆ
Rd

(
u(t, x+ σ(x, z))− u(t, x)− 1α>1σ(x, z) · ∇u(t, x)

)
να(dz).

I By Itô formula, s→ u(t− s,Xx
s ) is a martingale for s ∈ [0, t]. Then

Pσ,bt φ(x) = E(φ(Xx
t )) = E(u(t− s,Xx

s )) = E(u(t, x)) = u(t, x).
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σ u(t, x) + b(x) · ∇u(t, x),

u(0, x) = φ(x),
(3.2)

where

L α
σ u(t, x) =

ˆ
Rd

(
u(t, x+ σ(x, z))− u(t, x)− 1α>1σ(x, z) · ∇u(t, x)

)
να(dz).

I By Itô formula, s→ u(t− s,Xx
s ) is a martingale for s ∈ [0, t]. Then

Pσ,bt φ(x) = E(φ(Xx
t )) = E(u(t− s,Xx

s )) = E(u(t, x)) = u(t, x).
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Characteristic line

I Let θyt be a solution of following ODE{
dθyt = −b(θyt ),
θy0 = y,

for t ∈ [0, T ] and y ∈ Rd.

Remark 11

Under the condition Hb
β , there is a constant C such that for any |x− y| > 1,

|b(x)− b(y)| 6 C|x− y|,

which implies that θyt would never blow up. See Wang-Zhang[1].

[1] Degenerate SDE with Hölder-Dini drift and non-Lipschitz coefficient. SIAM J. Math. Anal. 48 (2016), 2189–2226.
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Perturbation

I Define Θy
t g(x) := g(x+ θyt ). Then Θy

t u satisfies a new PDE{
∂tΘy

t u(t, x) = L α
0 Θy

t u(t, x) + L̃ αΘy
t u(t, x) + b̃(x) · ∇Θy

t u(t, x),
Θy
t u(0, x) = φ(x+ y),

(3.3)

I where b̃(x) = Θy
t b(x)−Θy

t b(0),

L α
0 g(x) =

ˆ
Rd

(
g(x+ σ(θyt , z))− g(x)− 1α>1σ(θyt , z) · ∇g(x)

)
ν(dz),

L̃ αg(x) =
ˆ
Rd

Dy
z g(x)ν(dz)

:=
ˆ
Rd

(
g(x+ σ(x+ θyt , z))− g(x+ σ(θyt , z))− 1α>1σ̃(x, z) · ∇g(x)

)
ν(dz),

with σ̃(x, z) = σ(x+ θyt , z)− σ(θyt , z).

I Notice that there is a constant C such that |b̃(x)| 6 C|x|β ∧ |x| and

σ̃(0, z) = 0, |σ̃(x, z)| 6 c0|x||z|, |∇xσ̃(x, z)| 6 c0|z|.
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I Notice that L α
0 is the infinitesimal generation of the process

L0
s,t =

ˆ t

s

ˆ
Rd
σ(θyr , z)Ñ(dr, dz).

I Since the constant c0 in condition Hσ is independent with x and z, we drop the
coefficient y and denote σ(r, z) := σ(θyr , z).

I We denote by ps,t(x) the transition probability of L0
s,t, then crucial lemma is

available for ps,t. By the Duhamel’s formula,

Θy
t u(t, w) =

ˆ t

0

ˆ
Rd
ps,t(w − x)L̃ αΘy

t u(s, x)dxds

+
ˆ t

0

ˆ
Rd
ps,t(w − x)b̃(x) · ∇Θy

t u(s, x)dxds

+
ˆ
Rd
p0,t(w − x)φ(x+ y)dx.

I We operate the block operator ∆j on both sides and let w = 0,

∆ju(t, θyt ) = ∆jΘy
t u(t, 0) =

ˆ t

0

ˆ
Rd

∆jps,t(−x)L̃ αΘy
t u(s, x)dxds

+
ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∇Θy
t u(s, x)dxds+

ˆ
Rd

∆jp0,t(−x)φ(x+ y)dx,

:= I j
1 + I j

2 + I j
3 .

(3.4)
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I If there is a constant C such that all j and t ∈ (0, T ],

|I j
1 | ∨ |I

j
2 | 6 C2−γ1j

ˆ t

0
(t− s)

γ1
α ‖u(s)‖Bγ1

∞,∞
ds, (3.5)

and

|I j
3 | 6 C2−γ1jt

− 1
α

(
d
p
−γ2+γ1

)
‖φ‖Bγ2

p,∞
. (3.6)

I Then we have

2γ1j |∆ju(t, θyt )| 6 C

ˆ t

0
(t− s)

γ1
α ‖u(s)‖Bγ1

∞,∞
ds+ Ct

− 1
α

(
d
p
−γ2+γ1

)
‖φ‖Bγ2

p,∞
.

I In fact, for any t ∈ [0, T ] and x ∈ Rd there is a characteristic line θy· such that
θyt = x. See H.-Wu-Zhang[2]. Therefore we take supremum of x and j,

‖u(t)‖Bγ1
∞,∞

6 C

ˆ t

0
(t− s)

γ1
α ‖u(s)‖Bγ1

∞,∞
ds+ Ct

− 1
α

(
d
p
−γ2+γ1

)
‖φ‖Bγ2

p,∞
.

(3.7)

[2] Schauder’s estimate for nonlocal kinetic equations and its applications. Available at arXiv:1903.09967..
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Volterra-type Gronwall inequality

Lemma 12 (Volterra-type Gronwall inequality)
Assume A > 0. For any θ, ϑ > −1 and T > 0, there exists a constant C =
C(A, θ, ϑ, T ) > 0 such that if locally integrable functions f : R+ → R+ satisfy

f(t) 6 A

ˆ t

0
(t− s)θf(s)ds+Atϑ, t ∈ (0, T ],

then
f(t) 6 Ctϑ, t ∈ (0, T ].

I When d
p
− γ2 + γ1 < α, t

− 1
α

(
d
p
−γ2+γ1

)
is a local integral function on [0, T ].

Combining Volterra-type Gronwall inequality with (3.7), we obtain main result
for γ1 ∈ [0, α) and d

p
− γ2 < α− γ1.

I To prove (3.5) and (3.6), we need the crucial lemma.

I To lift the limitation of γ1 from [0, α) to [0, α + α ∧ 1), we need a lift theorem
by the semigroup property of Feller process.
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Estimate for I j
3

I (∆̃j∆j = ∆j and ∆j is symmetric)⇒

I j
3 =
ˆ
Rd

∆jp0,t(−x)φ(x+ y)dx =
ˆ
Rd

∆jp0,t(−x)∆̃jφ(x+ y)dx.

I (Hölder inequlity)⇒

|I j
3 | 6

ˆ
Rd
|∆jp0,t(−x)||∆̃jφ(x+ y)|dx 6 ‖∆jp0,t‖Lq‖∆̃jφ‖Lp ,

where 1
p

+ 1
q

= 1.
I (Definition of Besov space and crucial lemma 10)⇒

|I j
3 | 6 2−γ2j‖∆jp0,t‖Lq‖φ‖Bγ2

p,∞
. 2−γ1jt

− 1
α

( d
p
−γ2+γ1)‖φ‖Bγ2

p,∞
.

I Notice that d
p
− γ2 + γ1 > 0, which is γ2 6 d

p
+ γ1.
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Estimate for I j
2

I Define function χ ∈ C∞0 with

χ(x) =
{

1 when |x| < 1
2

0 when |x| > 1.

Lemma 13

Under condition Hb
β , function bz(x) := χ(x)

(
b(x + z) − b(z)

)
∈ Cβ(Rd). There

is a constant C such that all z ∈ Rd
‖bz‖Cβ 6 C.

I By Lemma13 and the fact that
‖f‖Cβ(Rd) . sup

z∈Rd
‖f‖Cβ(B(z,1)),

we assume b ∈ Cβ and have a commutator estimate:

Lemma 14 (Chen-Zhang-Zhao 2017)

For β ∈ (0, 1) and θ ∈ (−β, 0], there is a constant C such that

‖[∆j , f ]g‖∞ 6 C2−j(β+θ)‖f‖Cβ‖g‖Bθ∞ ,
where [∆j , f ]g := ∆jfg − f∆jg.
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Estimate for I j
2

Lemma 15

Assume α ∈ ( 1
2 , 2). Under condition Hb

β with β ∈ ((1 − α) ∨ 0, α ∧ 1). For any
γ1 ∈ (0, α) and T > 0, there is a constant C such that for all t ∈ (0, T ], j ∈ N0 and
all classical solution u,

|I j
2 | 6 C2−γ1

ˆ t

0
(t− s)−

2γ1+β−1
α ‖u(s)‖Cγ1 ds.

Proof.
Notice that

ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∇Θy
t u(s, x)dxds

=
ˆ t

0

ˆ
Rd

∆jps,t(−x)[∆̃j , b̃(x)]∇Θy
t u(s, x)dxds

+
ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∆̃j∇Θy
t u(s, x)dxds.

By crucial lemma and commutator estimate, we complete the proof.
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Estimate for I j
2

Lemma 15

Assume α ∈ ( 1
2 , 2). Under condition Hb

β with β ∈ ((1 − α) ∨ 0, α ∧ 1). For any
γ1 ∈ (0, α) and T > 0, there is a constant C such that for all t ∈ (0, T ], j ∈ N0 and
all classical solution u,

|I j
2 | 6 C2−γ1

ˆ t

0
(t− s)−

2γ1+β−1
α ‖u(s)‖Cγ1 ds.

Proof.
Notice that

ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∇Θy
t u(s, x)dxds

=
ˆ t

0

ˆ
Rd

∆jps,t(−x)[∆̃j , b̃(x)]∇Θy
t u(s, x)dxds

+
ˆ t

0

ˆ
Rd

∆jps,t(−x)b̃(x) · ∆̃j∇Θy
t u(s, x)dxds.

By crucial lemma and commutator estimate, we complete the proof.
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Estimate for I j
1

I Recall that

Dy
z f(x) = f(x+ σ(x+ θyt , z))− f(x+ σ(θyt , z))− 1α>1σ̃(x, z) · ∇f(x).

I Define

µθ(h) :=
ˆ
Rd

(1 ∧ |x|)θ|h(x)|dx and 〈f, g〉 :=
ˆ
Rd
f(x)g(x)dx.

Lemma 16

For any θ ∈ [0, 1], there exists a constant C = C(d, θ) > 0 such that for all |z| 6
1

2c0
, f ∈ Cθ and g ∈ C2

|〈Dy
z f, g〉| 6 C|z|θ‖f‖∞

[
µ0(|g|) + µθ(|∇g|)θµθ(|g|)1−θ]

when α < 1 and

|〈Dy
z f, g〉| 6 C|z|1+θ‖f‖Cθ

[
µ0(|g|) + µ1(|∇g|) + µ1+θ(|∇2g|)θµ1+θ(|∇g|)1−θ]

when α > 1.
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The key point of the proof

I For simplicity, we assume α < 1 and φz(x) = σ(x+ θyt , z). Rewrite

Dzf(x) := Dy
z f(x) = f(x+ φz(x))− f(x+ φz(0)).

I We can let f̄(x) = f(x + φz(0)). Their Cθ norms are the same. Therefore we
assume that φz(0) = 0 and there is a constant such that |φz(x)| 6 C(|x|∧1)|z|.

I Let Γz(x) = x+ φz(x). By change of variable, we have

〈Dzf, g〉 = 〈f,D∗z g〉,

where

D∗z g(x) = det(∇xΓ−1
z (x))g(Γ−1

z (x))− g(x).

I Noticing that

| det(∇xΓ−1
z (x))− 1| 6 |z|, and |Γ−1

z (x)− x| 6 CC(|x| ∧ 1)|z|,

we complete the proof.
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Lemma 17

Let ε ∈ (0, α ∧ 1) and θ ∈ ((α − 1) ∨ 0, α ∧ 1).For any γ ∈ (0, α − ε), there is a
constant C > 0 such that for all j ∈ N0 and t ∈ (0, T ],

|I j
1 | 6 C2−γj

ˆ t

0
(t− s)−(γ+ε)/α‖u(s)‖Cθds.

I Recall

I j
1 =
ˆ t

0

ˆ
Rd

∆jps,t(−x)L̃ αΘy
t u(s, x)dxds.

Proof.

Let δ = κ
c0

.We only prove the estimate for α ∈ (1, 2). The case α ∈ (0, 1] is similar
and easier.Since the time variable and y does not play any essential role, below we
drop the time variable and Θy

t for simplicity of notations. By definition we can make
the following decomposition:

L̃ αu = Aδu+ Āδu,

where

Aδu(x) =
ˆ
|z|6δ

Dzu(x)ν(dz) and Āδu(x) =
ˆ
|z|>δ

Dzu(x)ν(dz).
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Proof.

I j
1 =
ˆ t

0
〈∆jps,t,Aδu〉ds+

ˆ t

0
〈∆jps,t, Āδu〉ds.

By Lemma16, we have

|〈∆jps,t,Aδu〉| 6 C

ˆ
|z|6δ

|z|1+θν(dz)‖u(s)‖CθB(s, t),

where

B(s, t) =

∣∣∣∣∣
1∑
i=0

µi(|∇i∆jps,t|) + µ1+θ(|∇2∆jps,t|)θµ1+θ(|∇∆jps,t|)1−θ

∣∣∣∣∣ .
Let α < 1 + θ < α+ ε

2 . By crucial lemma, we obtain that

|
ˆ t

0
〈∆jps,t,Aδu〉ds| 6 C

ˆ t

0
‖u(s)‖CθB(s, t)ds

. 2−γj
ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds+ 2−(γ−ε)j

ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds,

whereˆ t

0
µ1+θ(|∇j∆jps,t|)‖u(s)‖Cθds .

ˆ t

0

ˆ
Rd
|x|α−

ε
2 |∇j∆jps,t(x)|‖u(s)‖Cθds,
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Proof.
so
ˆ t

0
µ1+θ(|∇2∆jps,t|)θµ1+θ(|∇∆jps,t|)1−θ‖u(s)‖Cθds

. 2−(α− ε2−1−θ+γ)j
ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds 6 2−γj

ˆ t

0
(t− s)−

γ
α ‖u(s)‖Cθds.

For Āδu, by Fubini’s theorem and the integration by parts, we have

|〈∆jps,t, Āδu〉| 6
ˆ
|z|>δ

ˆ
Rd
|∆jps,t(x)||u(x+ σ(x, z))− u(x+ σ(0, z))|dxdz

+
ˆ
|z|>δ

ˆ
Rd
|
(

∆jps,t(x)divxσ(x, z) + (σ(x, z)− σ(0, z)) · ∇∆jps,t(x)
)
u(x)|dxdz

6 ‖u(s)‖∞
(
µ0(|∆jps,t|) + µ1(|∇∆jps,t|)

ˆ
|z|>δ

|z|dz
)
.

By crucial lemma again, we obtain that
ˆ t

0
|〈∆jps,t, Āδu〉|ds . 2−γj

ˆ t

0
(t− s)

γ
α ‖u(s)‖∞ds.
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Lift lemma

Lemma 18
Assume one of the following conditions holds,

I α ∈ (0, 2), b ≡ 0 and let β = 1.

I α ∈ ( 1
2 , 2) and condition (Hb

β) holds with β ∈ ((1− α) ∨ 0, α ∧ 1).

Under condition (Hσ
µ), for any

γ ∈ (α, α+ α ∧ β), δ ∈ [0, α),

there is a constant CT such that for all φ ∈ C∞0 (Rd) and all t ∈ (0, T ],

‖Pσ,bt φ‖Bγ∞,∞ 6 CT t
− δ
α ‖φ‖

B
γ−δ
p,∞

. (3.8)

I Notice that Pσ,bt φ = Pσ,bt
2
Pσ,bt

2
φ and (α, α+ α ∧ β)− α ⊂ (0, α), by this C-K

property, we obtain the main result.
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Future works

I We prove that the solution of SDE driven by cylindrical Lévy process has a den-
sity in Sobolev space Hs,r with

s < α− (α− 1) ∨ (1− β) and r <
d

d− α+ s+ β − 1 ,

but this result does not imply that this density is continuous. So how to improve
the index s and how to make r greater are interesting.

I In our work, we only consider the strong Feller property, which only depend on
the distribution of Xx

t . Moreover, the continuous property of σ is enough to
guarantee the existence of weak solution. So how to drop the assumption that σ
is Lipschitz.
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Thanks for your attention!
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