▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Gradient estimate for SDEs driven by cylindrical Lévy processes

Zimo Hao¹

Based on a joint work with Zhen-Qing Chen^{2,3} and Xicheng Zhang¹

¹Wuhan University ²University of Washington ³Beijing Institute of Technology

Workshop on Stochastic Analysis and Applications

School of Physical and Mathematical Sciences Nanyang Technological University

Singapore · June 03-05, 2019.

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

Plan of the talk

Introduction

- Introduction of cylindrical α -stable process
- SDE driven by cylindrical α -stable process
- Well-known results

2 Main Results

Introduction of Besov space

3 Sketch of the proof

- Crucial lemma
- Hölder estimate
- Lift and gradient estimate

4 Future works

Sketch of the proof

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

Part 1 : Introduction and our questions

Fix $\alpha \in (0, 2)$. Let L_t^{α} be an α -stable process with Lévy measure and ν_{α} with the following form:

$$\nu_{\alpha}(\mathrm{d}y) := \frac{\mathrm{d}r\mu(\mathrm{d}\omega)}{r^{1+\alpha}}, \ y = r\omega,$$

where μ is a finite measure on the unit sphere \mathbb{S}^{d-1} .

 \triangleright L_t^{α} has the following scaling property:

$$(\lambda^{1/\alpha}L_{\lambda t})_{t\geq 0} \stackrel{(d)}{=} (L_t)_{t\geq 0}.$$

• We call L_t^{α} being non-degenerate if the Lévy measure ν_{α} is nondegenerate in the following sense:

$$\int_{\mathbb{S}^{d-1}} |\omega_0 \cdot \omega| \, \mu(\mathrm{d}\omega) \neq 0, \ \forall \omega_0 \in \mathbb{S}^{d-1}.$$
(1.1)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Introduction	Main Results	Sketch of the proof	Future works
0000000	000000	000000000000000	
α -stable processes			

It is easy to verify that for any β₁ < α < β₂, positive number λ and positive measurable function f,

$$\int_{\mathbb{R}^d} \left(|y|^{\beta_1} \wedge |y|^{\beta_2} \right) \nu_{\alpha}(\mathrm{d}y) < \infty,$$
$$\int_{\mathbb{R}^d} f(\lambda y) \nu_{\alpha}(\mathrm{d}y) = \lambda^{\alpha} \int_{\mathbb{R}^d} f(y) \nu_{\alpha}(\mathrm{d}y).$$

▶ By Lévy-Khintchine formula, we have

$$\mathbb{E}(\exp[iL_t^{\alpha}\xi]) = e^{t\psi(\xi)}$$

where

$$\psi(\xi) := \int_{\mathbb{R}^d} (e^{i\xi \cdot z} - 1 - i\xi \cdot z\mathbb{1}_{|z| < 1})\nu_\alpha(dz).$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Example 1

When μ is Lebesgue measure of \mathbb{S}^{d-1} ,

$$\nu_{\alpha}(dz) = |z|^{-d-\alpha} dz, \quad \psi(\xi) = -c|\xi|^{\alpha} \in C^{\infty}(\mathbb{R}^d \setminus \{0\}).$$

We call this process the standard d-dim α -stable process.

Example 1

When μ is Lebesgue measure of \mathbb{S}^{d-1} ,

$$\nu_{\alpha}(dz) = |z|^{-d-\alpha} dz, \quad \psi(\xi) = -c|\xi|^{\alpha} \in C^{\infty}(\mathbb{R}^d \setminus \{0\}).$$

We call this process the standard d-dim α -stable process.

Example 2

When

$$\mu = \sum_{i=1}^{a} \delta_{e_i},$$

where $\{e_i\}_{i=1}^d$ is a basis of \mathbb{R}^d with $e_i = (0, ..1(i\text{th}), .., 0)$. It is the Lévy measure of process $(L_t^1, L_t^2, ..., L_t^d)$, where $\{L_t^i\}_{i=1}^d$ are i.i.d. standard 1-dim α -stable processes.

$$\psi(\xi) = -c \sum_{i=1}^{d} |\xi_i|^{\alpha} \in C^{\infty}(\mathbb{R}^d \setminus \bigcup_{i=1}^{d} \mathbb{R}_i^{d-1}),$$

where $\mathbb{R}_i^{d-1} := \{\xi_i = 0\}.$ We call this process the cylindrical α -stable process.

Main Results

Sketch of the proof

Future works

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

SDE driven by cylindrical α -stable process

Consider the following SDE driven by the Lévy process $L^{\nu_{\alpha}}$,

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) \tilde{N}(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x, \end{cases}$$
(1.2)

where $\sigma = (\sigma_i)_{i=1}^d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$, $b = (b_k)_{k=1}^d : \mathbb{R}^d \to \mathbb{R}^d$, N(dt, dz) is the Poisson random measure of L_t^{α} and

$$\tilde{N}(\mathrm{d}t,\mathrm{d}z) := N(\mathrm{d}t,\mathrm{d}z) - \mathrm{d}t\nu_{\alpha}(\mathrm{d}z).$$

Main Results

Sketch of the proof

Future works

SDE driven by cylindrical α -stable process

Consider the following SDE driven by the Lévy process $L^{\nu_{\alpha}}$,

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) \tilde{N}(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x, \end{cases}$$
(1.2)

where $\sigma = (\sigma_i)_{i=1}^d : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$, $b = (b_k)_{k=1}^d : \mathbb{R}^d \to \mathbb{R}^d$, N(dt, dz) is the Poisson random measure of L_t^{α} and

$$\tilde{N}(\mathrm{d}t,\mathrm{d}z) := N(\mathrm{d}t,\mathrm{d}z) - \mathrm{d}t\nu_{\alpha}(\mathrm{d}z).$$

Example 3

When L_t^{α} is a cylindrical α -stable process with $\alpha < 1$, the infinitesimal generator of X_t^x is \mathscr{L}_c^{α} ,

$$\mathscr{L}_{c}^{\alpha}f(x) = \sum_{i=1}^{d} \int_{\mathbb{R}} \frac{f(x+\sigma_{i}(x,z)) - f(x)}{|z|^{1+\alpha}} \mathrm{d}z.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Main Results

Sketch of the proof

Future works

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

- In what condition of σ and b, there is a weak(or strong) solution of SDE (1.2)?
- ▶ If there is a weak solution, does the solution have (strong) Feller property?
- ▶ If the solution has (strong) Feller property, can we get the precise estimate?

Main Resul
000000

Sketch of the proof

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Assumptions

Ir

 $(\mathbf{H}_{s}^{\sigma}) \ \sigma(x,z) = A(x)z$ for some matrix value map $A = (a_{i,j}) \mathbb{R}^{d} \to \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, there is a positive number c_{0} such that for any $x, y, \xi \in \mathbb{R}^{d}$ and all i, j = 1, ..., d

$$c_0^{-1}|\xi| \leqslant |\xi \cdot A(x)\xi| \leqslant c_0|\xi|, \tag{1.3}$$

$$|a_{i,j}(x) - a_{i,j}(y)| \leq c_0 |x - y|.$$
(1.4)

Main Results

Sketch of the proof

Future works

Assumptions

 $(\mathbf{H}_{s}^{\sigma}) \ \sigma(x,z) = A(x)z$ for some matrix value map $A = (a_{i,j}) \mathbb{R}^{d} \to \mathbb{R}^{d} \otimes \mathbb{R}^{d}$, there is a positive number c_{0} such that for any $x, y, \xi \in \mathbb{R}^{d}$ and all i, j = 1, ..., d

$$c_0^{-1}|\xi| \leqslant |\xi \cdot A(x)\xi| \leqslant c_0|\xi|, \tag{1.3}$$

$$|a_{i,j}(x) - a_{i,j}(y)| \leq c_0 |x - y|.$$
(1.4)

 (\mathbf{H}_{β}^{b}) For $\beta \in (0,1)$,

$$\sup_{0 < |x-y| \le 1} \frac{|b(x) - b(y)|}{|x-y|^{\beta}} < \infty.$$
(1.5)

- Notice that condition $(\mathbf{H}_{\beta_1}^b)$ implies $(\mathbf{H}_{\beta_2}^b)$ if $\beta_1 \ge \beta_2$ and b(x) = x satisfies (1.5) for all $\beta \in (0, 1)$.
- We always assume that there is a weak solution X_t^x of SDE (1.2) and define

$$P_t^{\sigma,b}\psi(x) = \mathbb{E}(\psi(X_t^x)), \qquad P_t^{\sigma} := P_t^{\sigma,0}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - のへで

Main Results

Sketch of the proof

Future works

(日)

Well-known results

2006 (Bass-Chen)

There is a weak solution X_t^x of (1.2) when σ is continuous, $b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process.

Main Results

Sketch of the proof

Future works

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Well-known results

2006 (Bass-Chen)

There is a weak solution X_t^x of (1.2) when σ is continuous, $b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process.

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable $x, b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process. If any bounded function h satisfies

 $h(x) = \mathbb{E}[h(X_{\tau_D}^x)]$ for every $x \in D$

for some bounded domain D, then h is Hölder continuous in D.

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

Well-known results

2006 (Bass-Chen)

There is a weak solution X_t^x of (1.2) when σ is continuous, $b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process.

2010 (Bass-Chen)

Assume $\sigma(x, z) = \sigma(x)z$ is continuous in variable $x, b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process. If any bounded function h satisfies

$$h(x) = \mathbb{E}[h(X_{\tau_D}^x)]$$
 for every $x \in D$

for some bounded domain D, then h is Hölder continuous in D.

2017 (Chen-Zhang-Zhao)

Under the condition $(\mathbf{H}_{s}^{\sigma})$ and (\mathbf{H}_{β}^{b}) with $\beta \in (1 - \frac{\alpha}{2}, 1)$, there is a unique strong solution of (1.2).

Main Results

Sketch of the proof

Future works

Well-known results

2018 (Kulczycki-Ryznar-Sztonyk)

Assume $b \equiv 0$ and L_t^{ν} is a cylindrical α -stable process with $\alpha \in (0, 1)$. Under the condition (\mathbf{H}_s^{σ}) , for any $\gamma \in (0, \alpha)$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x, y \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d)$

$$|P_t^{\sigma}f(x) - P_t^{\sigma}f(y)| \leqslant C|x - y|^{\gamma}t^{-\frac{\gamma}{\alpha}}||f||_{L^{\infty}}.$$
(1.6)

For any $\gamma \in (0, \frac{\alpha}{d})$, T > 0, there is a constant C such that for all $t \in (0, T]$, $x \in \mathbb{R}^d$ and $f \in L^{\infty}(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$

$$|P_t^{\sigma}f(x)| \leq Ct^{-\frac{\gamma d}{\alpha}} ||f||_{L^{\infty}}^{1-\gamma} ||f||_{L^1}^{\gamma}.$$
 (1.7)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Sketch of the proof

Future works

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ◆ □ ◆ ○ へ ⊙

Part 2: Our main results

Main Results

Sketch of the proof

Future works

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Littlewood-Paley decomposition and Besov space

Main Results

Sketch of the proof

Future works

Littlewood-Paley decomposition and Besov space

Definition 4 (Besov spaces)

For given $j \in \mathbb{N}_0$, the block operator Δ_j is defined on \mathscr{S}' by

$$\Delta_j f(x) := (\phi_j \hat{f}) \check{}(x) = \check{\phi}_j * f(x) = 2^{\cdot m(j-1)} \int_{\mathbb{R}^d} \check{\phi}_1(2^{(j-1)}y) f(x-y) \mathrm{d}y.$$

For any $s\in\mathbb{R}$ and $p\in[1,\infty],$ the Besov space $B^s_{p,\infty}$ is defined by

$$B_{p,\infty}^s(\mathbb{R}^d) := \bigg\{ f \in \mathscr{S}'(\mathbb{R}^d) : \|f\|_{B_{p,\infty}^s} := \sup_{j \ge 0} \left(2^{sj} \|\Delta_j f\|_{L^p} \right) < \infty \bigg\}.$$

▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

Main Results ○●○○○○ Sketch of the proof

Future works

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ = 臣 = のへで

The Propositions of Besov Space

Proposition 5

For any $s_1 \ge 0$ and $s_2 > 0$ with $s_2 \notin \mathbb{N}$,

$$H^{s_1,p}(\mathbb{R}^d) \subset B^{s_1}_{p,\infty}(\mathbb{R}^d) \quad and \quad C^{s_2}(\mathbb{R}^d) = B^{s_2}_{\infty,\infty}(\mathbb{R}^d),$$

For any $n \in \mathbb{N}$ *,*

$$C^n(\mathbb{R}^d) \subset B^n_{\infty,\infty}(\mathbb{R}^d).$$

Main Results ○●○○○○ Sketch of the proof

Future works

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

The Propositions of Besov Space

Proposition 5

For any $s_1 \ge 0$ and $s_2 > 0$ with $s_2 \notin \mathbb{N}$,

$$H^{s_1,p}(\mathbb{R}^d) \subset B^{s_1}_{p,\infty}(\mathbb{R}^d) \quad and \quad C^{s_2}(\mathbb{R}^d) = B^{s_2}_{\infty,\infty}(\mathbb{R}^d),$$

For any $n \in \mathbb{N}$ *,*

$$C^n(\mathbb{R}^d) \subset B^n_{\infty,\infty}(\mathbb{R}^d).$$

For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j = \Delta_j \widetilde{\Delta}_j, \text{ where } \widetilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1} \text{ with } \Delta_{-1} \equiv 0, \quad (2.1)$$

and Δ_j is symmetric in the sense that

$$\langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.$$

Main Results

Sketch of the proof

Future works

The Propositions of Besov Space

Proposition 5

For any $s_1 \ge 0$ and $s_2 > 0$ with $s_2 \notin \mathbb{N}$,

$$H^{s_1,p}(\mathbb{R}^d) \subset B^{s_1}_{p,\infty}(\mathbb{R}^d) \quad and \quad C^{s_2}(\mathbb{R}^d) = B^{s_2}_{\infty,\infty}(\mathbb{R}^d),$$

For any $n \in \mathbb{N}$ *,*

$$C^n(\mathbb{R}^d) \subset B^n_{\infty,\infty}(\mathbb{R}^d).$$

For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j = \Delta_j \widetilde{\Delta}_j, \text{ where } \widetilde{\Delta}_j := \Delta_{j-1} + \Delta_j + \Delta_{j+1} \text{ with } \Delta_{-1} \equiv 0, \quad (2.1)$$

and Δ_j is symmetric in the sense that

$$\langle \Delta_j f, g \rangle = \langle f, \Delta_j g \rangle.$$

 \blacktriangleright The cut-off low frequency operator S_k is defined by

$$S_k f := \sum_{j=0}^{k-1} \Delta_j f = 2^{dk} \int_{\mathbb{R}^d} \check{\phi}_0(2^k(x-y)) f(y) \mathrm{d}y \to f.$$
(2.2)

Main Results

Sketch of the proof

Future works

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Our assumption for σ

 $(\mathbf{H}^{\sigma}_{\mu})$ There is a constant $c_0 > 1$ such that for all $x, y, z \in \mathbb{R}^d$ and all $\lambda > 0$

$$\inf_{\omega \in \mathbb{S}^{d-1}} \inf_{\lambda > 0} \lambda \int_{\mathbb{S}^{d-1}} |\omega \cdot \sigma(x, \frac{z}{\lambda})| \mu(\mathrm{d}z) \ge c_0^{-1},$$

$$|\sigma(x, z) - \sigma(y, z)| \le c_0 |x - y| |z|.$$

$$c_0^{-1} |z| \le |\sigma(x, z)| \le c_0 |z|.$$
(2.3)

Remark 6

• Notice that condition H_s^{σ} implies condition H_{μ}^{σ} here.

• $\sigma(x,z) = (2 + sinz_1)z$ satisfies condition H^{σ}_{μ} but not satisfies condition H^{σ}_s .

Main Results

Sketch of the proof

Future works

Main Results

Theorem 7 (Gradient estimate for SDE solution)

Assume one of the following conditions holds,

 $\blacktriangleright \ \alpha \in (0,2), b \equiv 0 \text{ and let } \beta = 1.$

• $\alpha \in (\frac{1}{2}, 2)$ and condition (\mathbf{H}_{β}^{b}) holds with $\beta \in ((1 - \alpha) \lor 0, \alpha)$. Under condition $(\mathbf{H}_{\mu}^{\sigma})$, for any

$$\gamma_1 \in [0, \alpha + \alpha \land \beta), \quad (\frac{d}{p} - \gamma_2) \in \Big(-\gamma_1, \alpha - (\alpha - 1) \land (1 - \beta)\Big),$$

there is a constant C_T such that for all $\phi \in C_0^{\infty}(\mathbb{R}^d)$ and all $t \in (0, T]$,

$$\|P_t^{\sigma,b}\phi\|_{B^{\gamma_1}_{\infty,\infty}} \leqslant C_T t^{-\frac{1}{\alpha}\left(\frac{d}{p}-\gamma_2+\gamma_1\right)} \|\phi\|_{B^{\gamma_2}_{p,\infty}}.$$
(2.4)

In particular, when $\alpha > \frac{1}{2}$, we obtain the gradient estimate,

$$\|\nabla P_t^{\sigma,b}\phi\|_{\infty} \leqslant C_T t^{-\frac{1}{\alpha}} \|\phi\|_{\infty}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction Main

Main Results

Sketch of the proof

Future works

Main Results

• If taking $\gamma_2 = 0$ and $p_1 = \infty$, we get a corollary directly.

Corollary 8

Assume one of the following conditions holds,

- $\blacktriangleright \ \alpha \in (0,2), b \equiv 0 \text{ and let } \beta = 1.$
- $\alpha \in (\frac{1}{2}, 2)$ and condition (\mathbf{H}_{β}^{b}) holds with $\beta \in ((1 \alpha) \vee 0, \alpha)$.

Under condition $(\mathbf{H}^{\sigma}_{\mu})$, for any $\gamma \in [0, \alpha + \alpha \land \beta)$, there is a constant C_T such that for all $\phi \in L^{\infty}(\mathbb{R}^d)$ and all $t \in (0, T]$,

$$\|P_t^{\sigma,b}\phi\|_{C^{\gamma}} \leqslant C_T t^{-\frac{\gamma}{\alpha}} \|\phi\|_{L^{\infty}}.$$
(2.5)

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	
00000000	

Main Results

Sketch of the proof

Future works

Main Results

• If taking $\gamma_2 = 0$ and $p_1 = \infty$, we get a corollary directly.

Corollary 8

Assume one of the following conditions holds,

- $\blacktriangleright \ \alpha \in (0,2), b \equiv 0 \text{ and let } \beta = 1.$
- $\alpha \in (\frac{1}{2}, 2)$ and condition (\mathbf{H}_{β}^{b}) holds with $\beta \in ((1 \alpha) \lor 0, \alpha)$.

Under condition $(\mathbf{H}_{\mu}^{\sigma})$, for any $\gamma \in [0, \alpha + \alpha \land \beta)$, there is a constant C_T such that for all $\phi \in L^{\infty}(\mathbb{R}^d)$ and all $t \in (0, T]$,

$$\|P_t^{\sigma,b}\phi\|_{C^{\gamma}} \leqslant C_T t^{-\frac{\gamma}{\alpha}} \|\phi\|_{L^{\infty}}.$$
(2.5)

- ▶ Notice that (2.5) reduced the restriction of the γ in (1.6) from $(0, \alpha)$ to $(0, \alpha + \alpha \land \beta)$. In particular, we have gradient estimate. Moreover, we can deal with the case $\alpha \ge 1$.
- ▶ By a way of interpolation, we also get (1.7) from Theorem7.

Introduction	
00000000	

Main Results

Main Results

Sketch of the proof

Future works

▶ By the dual space theorem, we get the existence of density:

Corollary 9

Fix any $0 \leq s < t$, there is a function $p_{s,t}^{\sigma,b} \colon \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$, for any $x \in \mathbb{R}^d$

$$p_{s,t}^{\sigma,b}(x,\cdot) \in \cap_{(s,r)\in\mathscr{I}} H^{s,q}(\mathbb{R}^d)$$

where $H^{s,q}$ is the Sobolev space and

$$\mathscr{I} = \left\{ (s,r) \mid s < \alpha - (\alpha - 1) \lor (1 - \beta), \quad q \in [1, \frac{d}{d - \alpha + s + (\alpha - 1) \lor (\beta - 1)}) \right\}$$
$$\subset [0, \infty] \times [1, \infty],$$

such that all $\phi \in C_0^{\infty}(\mathbb{R}^d)$,

$$P_t^{\sigma,b}\phi(x) = \int_{\mathbb{R}^d} p_t^{\sigma,b}(x,y)\phi(y)\mathrm{d}y.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Introduction 00000000	Main Results 000000	Sketch of the proof	Future works
Crucial lemma			

► Let θ : $\mathbb{R}_+ \to \mathbb{R}^d$ is a measurable function and $p_{s,t}$ be the transition probability of process

$$Z_{s,t} := \int_s^t \int_{\mathbb{R}^d} \sigma(\theta(r), z) \tilde{N}(dz, dr).$$

Lemma 10 (Crucial Lemma)

For any β ∈ [0, α), γ ∈ [0, +∞) and T > 0, there is a constants C such that for m ∈ N₀ all j > 0, f ∈ L¹_{loc}(ℝ₊) and t ∈ (0, T] s ∈ [0, t),
∫^t₀ ∫_{ℝ^d} |x|^β|∇^mΔ_jp_{s,t}(x)||f(s)|dxds ≤ C2^{(m-γ-β)j} ∫^t₀(t - s)^{- ^x/_α} |f(s)|ds.
For any m ∈ N₀, q ∈ [1,∞], ¹/_p + ¹/_q = 1 and γ ∈ [0,+∞), there is a constant C such that for all (t - s) ∈ (0, T],
||∇^mΔ_jp_{s,t}||_{L^q(ℝ^d)} ≤ C(t - s)<sup>- ¹/_α(γ-m+^d/_p)2^{-γj}.
</sup>

・

Main Results

Sketch of the proof

Future works

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_s^t a(r) \mathrm{d}L_t^\alpha \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^\alpha \stackrel{(d)}{=} L_t^\alpha.$$

Therefore using the change of variable and the scaling property, we have

$$\int_{s}^{t} a(r) \mathrm{d}L_{r}^{\alpha} = \int_{0}^{t-s} a(r+s) \mathrm{d}\left(L_{r+s}^{\alpha} - L_{s}^{\alpha}\right)$$
$$\stackrel{(d)}{=} (t-s)^{-\frac{1}{\alpha}} \int_{0}^{1} a(r(t-s)+s) \mathrm{d}L_{r}^{\alpha}.$$

We denote by $\bar{p}_{0,1}$ the density of $\int_0^1 a(r(t-s)+s)\mathrm{d}L_r^{\alpha},$ then

$$p_{s,t}(x) = (t-s)^{-\frac{d}{\alpha}} \bar{p}_{0,1}((t-s)^{-\frac{1}{\alpha}} x).$$

Main Results

Sketch of the proof

Future works

The key point of proof

► For simplify, we assume $\sigma(x, z) = A(x)z$ for some matrix value map $A : \mathbb{R}^d \to \mathbb{R}^d \otimes \mathbb{R}^d$ and $a(t) := A(\theta(t))$. Recall that $p_{s,t}$ is the transition probability of

$$Z_{s,t} = \int_s^t a(r) \mathrm{d}L_t^\alpha \quad \text{with} \quad \lambda^{\frac{1}{\alpha}} L_{\lambda t}^\alpha \stackrel{(d)}{=} L_t^\alpha.$$

Therefore using the change of variable and the scaling property, we have

$$\int_{s}^{t} a(r) \mathrm{d}L_{r}^{\alpha} = \int_{0}^{t-s} a(r+s) \mathrm{d}\left(L_{r+s}^{\alpha} - L_{s}^{\alpha}\right)$$
$$\stackrel{(d)}{=} (t-s)^{-\frac{1}{\alpha}} \int_{0}^{1} a(r(t-s)+s) \mathrm{d}L_{r}^{\alpha}$$

We denote by $\bar{p}_{0,1}$ the density of $\int_0^1 a(r(t-s)+s) \mathrm{d}L_r^{\alpha}$, then

$$p_{s,t}(x) = (t-s)^{-\frac{d}{\alpha}} \bar{p}_{0,1}((t-s)^{-\frac{1}{\alpha}} x).$$

Condition

$$\inf_{\omega \in \mathbb{S}^{d-1}} \inf_{\lambda > 0} \lambda \int_{\mathbb{S}^{d-1}} |\omega \cdot \sigma(x, \frac{z}{\lambda})| \mu(\mathrm{d}z) \ge c_0^{-1}$$
(3.1)

guarantee that for any $n \in \mathbb{N}_0$ and $\beta \in [0, \alpha)$, there is a constant C such that

$$\int_{\mathbb{R}^d} |x|^{\beta} |\nabla^n \bar{p}_{0,1}(x)| \mathrm{d}x \leqslant C.$$

Main Results

Sketch of the proof

Future works

PDE related to SDE

• Recall that X_t^x is the weak solution of SDE

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) \tilde{N}(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x. \end{cases}$$

Main Results

Sketch of the proof

Future works

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

PDE related to SDE

▶ Recall that X_t^x is the weak solution of SDE

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) \tilde{N}(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x. \end{cases}$$

▶ We let $u(t, x) \in C([0, T]; C^{\alpha+\varepsilon}(\mathbb{R}^d) \cap C^{1+\varepsilon}(\mathbb{R}^d))$ for some $\varepsilon > 0$ be a solution of following PDE,

$$\begin{cases} \partial_t u(t,x) = \mathscr{L}^{\alpha}_{\sigma} u(t,x) + b(x) \cdot \nabla u(t,x), \\ u(0,x) = \phi(x), \end{cases}$$
(3.2)

where

$$\mathscr{L}^{\alpha}_{\sigma}u(t,x) = \int_{\mathbb{R}^d} \Big(u(t,x+\sigma(x,z)) - u(t,x) - \mathbb{1}_{\alpha \ge 1}\sigma(x,z) \cdot \nabla u(t,x) \Big) \nu_{\alpha}(\mathrm{d}z).$$

Main Results

Sketch of the proof

Future works

PDE related to SDE

• Recall that X_t^x is the weak solution of SDE

$$\begin{cases} \mathrm{d}X_t^x = \int_{\mathbb{R}^d} \sigma(X_{t-}, z) \tilde{N}(\mathrm{d}t, \mathrm{d}z) + b(X_t) \mathrm{d}t, \\ X_0^x = x. \end{cases}$$

▶ We let $u(t, x) \in C([0, T]; C^{\alpha+\varepsilon}(\mathbb{R}^d) \cap C^{1+\varepsilon}(\mathbb{R}^d))$ for some $\varepsilon > 0$ be a solution of following PDE,

$$\begin{cases} \partial_t u(t,x) = \mathscr{L}^{\alpha}_{\sigma} u(t,x) + b(x) \cdot \nabla u(t,x), \\ u(0,x) = \phi(x), \end{cases}$$
(3.2)

where

$$\mathscr{L}^{\alpha}_{\sigma}u(t,x) = \int_{\mathbb{R}^d} \Big(u(t,x+\sigma(x,z)) - u(t,x) - \mathbb{1}_{\alpha \ge 1}\sigma(x,z) \cdot \nabla u(t,x) \Big) \nu_{\alpha}(\mathrm{d}z).$$

▶ By Itô formula, $s \to u(t - s, X_s^x)$ is a martingale for $s \in [0, t]$. Then

$$P_t^{\sigma,b}\phi(x) = \mathbb{E}(\phi(X_t^x)) = \mathbb{E}(u(t-s,X_s^x)) = \mathbb{E}(u(t,x)) = u(t,x).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ● ● ● ●

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

Characteristic line

• Let θ_t^y be a solution of following ODE

$$\begin{cases} \mathrm{d} \theta^y_t = -b(\theta^y_t), \\ \theta^y_0 = y, \end{cases}$$

for $t \in [0, T]$ and $y \in \mathbb{R}^d$.

Remark 11

Under the condition H^b_β , there is a constant C such that for any $|x - y| \ge 1$,

$$|b(x) - b(y)| \le C|x - y|,$$

which implies that θ_t^y would never blow up. See Wang-Zhang^[1].

[1] Degenerate SDE with Hölder-Dini drift and non-Lipschitz coefficient. SIAM J. Math. Anal. 48 (2016), 2189-2226.

Main Results

Sketch of the proof

Future works

Perturbation

▶ Define $\Theta_t^y g(x) := g(x + \theta_t^y)$. Then $\Theta_t^y u$ satisfies a new PDE

$$\begin{cases} \partial_t \Theta_t^y u(t,x) = \mathscr{L}_0^\alpha \Theta_t^y u(t,x) + \tilde{\mathscr{L}}^\alpha \Theta_t^y u(t,x) + \tilde{b}(x) \cdot \nabla \Theta_t^y u(t,x), \\ \Theta_t^y u(0,x) = \phi(x+y), \end{cases}$$

(3.3)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Main Results

Sketch of the proof

Future works

Perturbation

▶ Define $\Theta_t^y g(x) := g(x + \theta_t^y)$. Then $\Theta_t^y u$ satisfies a new PDE

$$\begin{cases} \partial_t \Theta_t^y u(t,x) = \mathscr{L}_0^\alpha \Theta_t^y u(t,x) + \tilde{\mathscr{L}}^\alpha \Theta_t^y u(t,x) + \tilde{b}(x) \cdot \nabla \Theta_t^y u(t,x), \\ \Theta_t^y u(0,x) = \phi(x+y), \end{cases}$$
(3.3)

• where
$$\tilde{b}(x) = \Theta_t^y b(x) - \Theta_t^y b(0)$$
,

$$\begin{split} &\mathcal{L}_{0}^{\alpha}g(x) = \int_{\mathbb{R}^{d}} \Big(g(x + \sigma(\theta_{t}^{y}, z)) - g(x) - \mathbb{1}_{\alpha \geqslant 1}\sigma(\theta_{t}^{y}, z) \cdot \nabla g(x)\Big)\nu(\mathrm{d}z), \\ &\tilde{\mathcal{L}}^{\alpha}g(x) = \int_{\mathbb{R}^{d}} \mathcal{D}_{z}^{y}g(x)\nu(\mathrm{d}z) \\ &:= \int_{\mathbb{R}^{d}} \Big(g(x + \sigma(x + \theta_{t}^{y}, z)) - g(x + \sigma(\theta_{t}^{y}, z)) - \mathbb{1}_{\alpha \geqslant 1}\tilde{\sigma}(x, z) \cdot \nabla g(x)\Big)\nu(\mathrm{d}z), \end{split}$$

with $\tilde{\sigma}(x, z) = \sigma(x + \theta_t^y, z) - \sigma(\theta_t^y, z).$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへぐ

Main Results

Sketch of the proof

Future works

Perturbation

▶ Define $\Theta_t^y g(x) := g(x + \theta_t^y)$. Then $\Theta_t^y u$ satisfies a new PDE

$$\begin{cases} \partial_t \Theta_t^y u(t,x) = \mathscr{L}_0^\alpha \Theta_t^y u(t,x) + \tilde{\mathscr{L}}^\alpha \Theta_t^y u(t,x) + \tilde{b}(x) \cdot \nabla \Theta_t^y u(t,x), \\ \Theta_t^y u(0,x) = \phi(x+y), \end{cases}$$
(3.3)

• where
$$\tilde{b}(x) = \Theta_t^y b(x) - \Theta_t^y b(0)$$
,

$$\begin{split} \mathscr{L}_{0}^{\alpha}g(x) &= \int_{\mathbb{R}^{d}} \left(g(x + \sigma(\theta_{t}^{y}, z)) - g(x) - \mathbb{1}_{\alpha \geqslant 1}\sigma(\theta_{t}^{y}, z) \cdot \nabla g(x) \right) \nu(\mathrm{d}z), \\ \tilde{\mathscr{L}}^{\alpha}g(x) &= \int_{\mathbb{R}^{d}} \mathscr{D}_{z}^{y}g(x)\nu(\mathrm{d}z) \\ &:= \int_{\mathbb{R}^{d}} \left(g(x + \sigma(x + \theta_{t}^{y}, z)) - g(x + \sigma(\theta_{t}^{y}, z)) - \mathbb{1}_{\alpha \geqslant 1}\tilde{\sigma}(x, z) \cdot \nabla g(x) \right) \nu(\mathrm{d}z), \end{split}$$

with $\tilde{\sigma}(x, z) = \sigma(x + \theta_t^y, z) - \sigma(\theta_t^y, z).$

▶ Notice that there is a constant C such that $|\tilde{b}(x)| \leq C|x|^{\beta} \wedge |x|$ and

$$\tilde{\sigma}(0,z) = 0, \quad |\tilde{\sigma}(x,z)| \leq c_0 |x||z|, \quad |\nabla_x \tilde{\sigma}(x,z)| \leq c_0 |z|.$$

Main Results

Sketch of the proof

Future works

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

$$L_{s,t}^{0} = \int_{s}^{t} \int_{\mathbb{R}^{d}} \sigma(\theta_{r}^{y}, z) \tilde{N}(\mathrm{d}r, \mathrm{d}z).$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

$$L_{s,t}^{0} = \int_{s}^{t} \int_{\mathbb{R}^{d}} \sigma(\theta_{r}^{y}, z) \tilde{N}(\mathrm{d}r, \mathrm{d}z).$$

Since the constant c_0 in condition \mathbf{H}^{σ} is independent with x and z, we drop the coefficient y and denote $\sigma(r, z) := \sigma(\theta_r^y, z)$.

Sketch of the proof

Future works

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

000000 000

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

$$L_{s,t}^0 = \int_s^t \int_{\mathbb{R}^d} \sigma(\theta_r^y, z) \tilde{N}(\mathrm{d}r, \mathrm{d}z).$$

- Since the constant c_0 in condition \mathbf{H}^{σ} is independent with x and z, we drop the coefficient y and denote $\sigma(r, z) := \sigma(\theta_r^y, z)$.
- ▶ We denote by $p_{s,t}(x)$ the transition probability of $L_{s,t}^0$, then crucial lemma is available for $p_{s,t}$. By the Duhamel's formula,

$$\begin{split} \Theta_t^y u(t,w) &= \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{\mathscr{L}}^{\alpha} \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{b}(x) \cdot \nabla \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_{\mathbb{R}^d} p_{0,t}(w-x) \phi(x+y) \mathrm{d}x. \end{split}$$

▶ Notice that \mathscr{L}_0^{α} is the infinitesimal generation of the process

Main Results

$$L_{s,t}^0 = \int_s^t \int_{\mathbb{R}^d} \sigma(\theta_r^y, z) \tilde{N}(\mathrm{d} r, \mathrm{d} z).$$

- Since the constant c_0 in condition \mathbf{H}^{σ} is independent with x and z, we drop the coefficient y and denote $\sigma(r, z) := \sigma(\theta_r^y, z)$.
- ▶ We denote by $p_{s,t}(x)$ the transition probability of $L_{s,t}^0$, then crucial lemma is available for $p_{s,t}$. By the Duhamel's formula,

$$\begin{split} \Theta_t^y u(t,w) &= \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{\mathscr{L}}^{\alpha} \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_0^t \int_{\mathbb{R}^d} p_{s,t}(w-x) \tilde{b}(x) \cdot \nabla \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s \\ &+ \int_{\mathbb{R}^d} p_{0,t}(w-x) \phi(x+y) \mathrm{d}x. \end{split}$$

• We operate the block operator Δ_j on both sides and let w = 0,

$$\begin{split} \Delta_{j}u(t,\theta_{t}^{y}) &= \Delta_{j}\Theta_{t}^{y}u(t,0) = \int_{0}^{t}\int_{\mathbb{R}^{d}}\Delta_{j}p_{s,t}(-x)\tilde{\mathscr{L}}^{\alpha}\Theta_{t}^{y}u(s,x)\mathrm{d}x\mathrm{d}s \\ &+ \int_{0}^{t}\int_{\mathbb{R}^{d}}\Delta_{j}p_{s,t}(-x)\tilde{b}(x)\cdot\nabla\Theta_{t}^{y}u(s,x)\mathrm{d}x\mathrm{d}s + \int_{\mathbb{R}^{d}}\Delta_{j}p_{0,t}(-x)\phi(x+y)\mathrm{d}x, \\ &:= \mathscr{I}_{1}^{j} + \mathscr{I}_{2}^{j} + \mathscr{I}_{3}^{j}. \end{split}$$

Main Results	Sketch of the proof	Future works
000000	000000000000000000000000000000000000000	

• If there is a constant C such that all j and $t \in (0, T]$,

$$|\mathscr{I}_{1}^{j}| \vee |\mathscr{I}_{2}^{j}| \leqslant C 2^{-\gamma_{1}j} \int_{0}^{t} (t-s)^{\frac{\gamma_{1}}{\alpha}} \|u(s)\|_{B^{\gamma_{1}}_{\infty,\infty}} ds,$$
(3.5)

and

Introduction

$$|\mathscr{I}_{3}^{j}| \leqslant C 2^{-\gamma_{1}j} t^{-\frac{1}{\alpha} \left(\frac{d}{p} - \gamma_{2} + \gamma_{1}\right)} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}}.$$
(3.6)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Main Results	Sketch of the proof	Future works
000000	000000000000000000000000000000000000000	

▶ If there is a constant C such that all j and $t \in (0, T]$,

$$|\mathscr{I}_{1}^{j}| \vee |\mathscr{I}_{2}^{j}| \leqslant C 2^{-\gamma_{1}j} \int_{0}^{t} (t-s)^{\frac{\gamma_{1}}{\alpha}} \|u(s)\|_{B^{\gamma_{1}}_{\infty,\infty}} ds,$$
(3.5)

and

Introduction

$$|\mathscr{I}_{3}^{j}| \leqslant C 2^{-\gamma_{1}j} t^{-\frac{1}{\alpha} \left(\frac{d}{p} - \gamma_{2} + \gamma_{1}\right)} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}}.$$
(3.6)

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

► Then we have

$$2^{\gamma_1 j} |\Delta_j u(t, \theta_t^y)| \leqslant C \int_0^t (t-s)^{\frac{\gamma_1}{\alpha}} ||u(s)||_{B^{\gamma_1}_{\infty,\infty}} ds + Ct^{-\frac{1}{\alpha} \left(\frac{d}{p} - \gamma_2 + \gamma_1\right)} ||\phi||_{B^{\gamma_2}_{p,\infty}}$$

Main Results	Sketch of the proof	Future works
000000	000000000000000000000000000000000000000	

▶ If there is a constant C such that all j and $t \in (0, T]$,

$$|\mathscr{I}_{1}^{j}| \vee |\mathscr{I}_{2}^{j}| \leqslant C 2^{-\gamma_{1}j} \int_{0}^{t} (t-s)^{\frac{\gamma_{1}}{\alpha}} \|u(s)\|_{B^{\gamma_{1}}_{\infty,\infty}} ds,$$
(3.5)

and

Introduction

$$|\mathscr{I}_{3}^{j}| \leqslant C 2^{-\gamma_{1}j} t^{-\frac{1}{\alpha} \left(\frac{d}{p} - \gamma_{2} + \gamma_{1}\right)} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}}.$$
(3.6)

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

▶ Then we have

$$2^{\gamma_{1}j}|\Delta_{j}u(t,\theta_{t}^{y})| \leq C \int_{0}^{t} (t-s)^{\frac{\gamma_{1}}{\alpha}} \|u(s)\|_{B^{\gamma_{1}}_{\infty,\infty}} ds + Ct^{-\frac{1}{\alpha}\left(\frac{d}{p}-\gamma_{2}+\gamma_{1}\right)} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}}$$

▶ In fact, for any $t \in [0, T]$ and $x \in \mathbb{R}^d$ there is a characteristic line θ^y such that $\theta^y_t = x$. See H.-Wu-Zhang^[2]. Therefore we take supremum of x and j,

$$\|u(t)\|_{B^{\gamma_1}_{\infty,\infty}} \leqslant C \int_0^t (t-s)^{\frac{\gamma_1}{\alpha}} \|u(s)\|_{B^{\gamma_1}_{\infty,\infty}} ds + Ct^{-\frac{1}{\alpha} \left(\frac{d}{p} - \gamma_2 + \gamma_1\right)} \|\phi\|_{B^{\gamma_2}_{p,\infty}}.$$
(3.7)

[2] Schauder's estimate for nonlocal kinetic equations and its applications. Available at arXiv:1903.09967...

Main Results

Sketch of the proof

Future works

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Volterra-type Gronwall inequality

Lemma 12 (Volterra-type Gronwall inequality)

Assume A > 0. For any $\theta, \vartheta > -1$ and T > 0, there exists a constant $C = C(A, \theta, \vartheta, T) \ge 0$ such that if locally integrable functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy

$$f(t) \leqslant A \int_0^t (t-s)^\theta f(s) \mathrm{d}s + At^\vartheta, \quad t \in (0,T],$$

then

$$f(t) \leqslant Ct^{\vartheta}, \quad t \in (0,T].$$

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

Volterra-type Gronwall inequality

Lemma 12 (Volterra-type Gronwall inequality)

Assume A > 0. For any $\theta, \vartheta > -1$ and T > 0, there exists a constant $C = C(A, \theta, \vartheta, T) \ge 0$ such that if locally integrable functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy

$$f(t) \leqslant A \int_0^t (t-s)^\theta f(s) \mathrm{d}s + At^\vartheta, \quad t \in (0,T],$$

then

$$f(t) \leqslant Ct^{\vartheta}, \quad t \in (0,T].$$

- When ^d/_p − γ₂ + γ₁ < α, t^{-1/α}(^d/_p−γ₂+γ₁) is a local integral function on [0, T]. Combining Volterra-type Gronwall inequality with (3.7), we obtain main result for γ₁ ∈ [0, α) and ^d/_p − γ₂ < α − γ₁.
- ▶ To prove (3.5) and (3.6), we need the crucial lemma.
- ► To lift the limitation of γ_1 from $[0, \alpha)$ to $[0, \alpha + \alpha \wedge 1)$, we need a lift theorem by the semigroup property of Feller process.

Main Results

Sketch of the proof

Future works

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Estimate for \mathscr{I}_3^j

$$\begin{array}{l} \blacktriangleright \quad (\tilde{\Delta}_j \Delta_j = \Delta_j \text{ and } \Delta_j \text{ is symmetric}) \Rightarrow \\ \\ \mathscr{I}_3^j = \int_{\mathbb{R}^d} \Delta_j p_{0,t}(-x) \phi(x+y) dx = \int_{\mathbb{R}^d} \Delta_j p_{0,t}(-x) \tilde{\Delta}_j \phi(x+y) dx. \end{array}$$

Main Results

Sketch of the proof

Future works

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Estimate for \mathscr{I}_3^j

$$\begin{array}{l} \bullet \quad (\tilde{\Delta}_j \Delta_j = \Delta_j \text{ and } \Delta_j \text{ is symmetric}) \Rightarrow \\ \\ \mathscr{I}_3^j = \int_{\mathbb{R}^d} \Delta_j p_{0,t}(-x) \phi(x+y) dx = \int_{\mathbb{R}^d} \Delta_j p_{0,t}(-x) \tilde{\Delta}_j \phi(x+y) dx. \end{array}$$

► (Hölder inequiity)⇒

$$\begin{split} |\mathscr{I}_{3}^{j}| \leqslant \int_{\mathbb{R}^{d}} |\Delta_{j}p_{0,t}(-x)| |\tilde{\Delta}_{j}\phi(x+y)| dx \leqslant \|\Delta_{j}p_{0,t}\|_{L^{q}} \|\tilde{\Delta}_{j}\phi\|_{L^{p}}, \end{split}$$
where $\frac{1}{p} + \frac{1}{q} = 1.$

Main Results

Sketch of the proof

Future works

Estimate for \mathscr{I}_3^j

$$(\Delta_j \Delta_j = \Delta_j \text{ and } \Delta_j \text{ is symmetric}) \Rightarrow$$
$$\mathscr{I}_3^j = \int_{\mathbb{R}^d} \Delta_j p_{0,t}(-x)\phi(x+y)dx = \int_{\mathbb{R}^d} \Delta_j p_{0,t}(-x)\tilde{\Delta}_j\phi(x+y)dx.$$

▶ (Hölder inequlity) \Rightarrow

$$|\mathscr{I}_{3}^{j}| \leqslant \int_{\mathbb{R}^{d}} |\Delta_{j} p_{0,t}(-x)| |\tilde{\Delta}_{j} \phi(x+y)| dx \leqslant \|\Delta_{j} p_{0,t}\|_{L^{q}} \|\tilde{\Delta}_{j} \phi\|_{L^{p}},$$

where $\frac{1}{p} + \frac{1}{q} = 1$.

▶ (Definition of Besov space and crucial lemma $10) \Rightarrow$

$$|\mathscr{I}_{3}^{j}| \leqslant 2^{-\gamma_{2}j} \|\Delta_{j} p_{0,t}\|_{L^{q}} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}} \lesssim 2^{-\gamma_{1}j} t^{-\frac{1}{\alpha}(\frac{d}{p}-\gamma_{2}+\gamma_{1})} \|\phi\|_{B^{\gamma_{2}}_{p,\infty}}.$$

• Notice that $\frac{d}{p} - \gamma_2 + \gamma_1 \ge 0$, which is $\gamma_2 \le \frac{d}{p} + \gamma_1$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Main Results

Sketch of the proof

Future works

Estimate for \mathscr{I}_2^j

► Define function $\chi \in C_0^\infty$ with $\chi(x) = \begin{cases} 1 & \text{when } |x| < \frac{1}{2} \\ 0 & \text{when } |x| > 1. \end{cases}$

Lemma 13

Under condition \mathbf{H}_{β}^{b} , function $b_{z}(x) := \chi(x) \Big(b(x+z) - b(z) \Big) \in C^{\beta}(\mathbb{R}^{d})$. There is a constant C such that all $z \in \mathbb{R}^{d}$ $\|b_{z}\|_{C^{\beta}} \leq C$.

By Lemma13 and the fact that

$$\|f\|_{C^{\beta}(\mathbb{R}^{d})} \lesssim \sup_{z \in \mathbb{R}^{d}} \|f\|_{C^{\beta}(B(z,1))},$$

we assume $b \in C^{\beta}$ and have a commutator estimate:

Main Results

Sketch of the proof

Future works

Estimate for $\mathscr{I}_2^{\mathscr{I}}$

Define function $\chi \in C_0^{\infty}$ with $\chi(x) = \begin{cases} 1 & \text{when } |x| < \frac{1}{2} \\ 0 & \text{when } |x| > 1. \end{cases}$

Lemma 13

Under condition \mathbf{H}_{β}^{b} , function $b_{z}(x) := \chi(x) \Big(b(x+z) - b(z) \Big) \in C^{\beta}(\mathbb{R}^{d})$. There is a constant C such that all $z \in \mathbb{R}^{d}$ $\|b_{z}\|_{C^{\beta}} \leq C$.

By Lemma13 and the fact that

$$\|f\|_{C^{\beta}(\mathbb{R}^{d})} \lesssim \sup_{z \in \mathbb{R}^{d}} \|f\|_{C^{\beta}(B(z,1))},$$

we assume $b \in C^{\beta}$ and have a commutator estimate:

Lemma 14 (Chen-Zhang-Zhao 2017)

For $\beta \in (0,1)$ and $\theta \in (-\beta, 0]$, there is a constant C such that $\|[\Delta_j, f]g\|_{\infty} \leq C2^{-j(\beta+\theta)} \|f\|_{C^{\beta}} \|g\|_{B^{\theta}_{\infty}},$ where $[\Delta_j, f]g := \Delta_j fg - f\Delta_j g.$

Introduction 00000000	Main Results 000000	Sketch of the proof	Future
Estimate for \mathscr{I}_2^j			

works

▲□▶▲□▶▲□▶▲□▶ ▲□ ● のへで

Lemma 15

Assume $\alpha \in (\frac{1}{2}, 2)$. Under condition H^b_{β} with $\beta \in ((1 - \alpha) \lor 0, \alpha \land 1)$. For any $\gamma_1 \in (0, \alpha)$ and T > 0, there is a constant C such that for all $t \in (0, T]$, $j \in \mathbb{N}_0$ and all classical solution u,

$$|\mathscr{I}_{2}^{j}| \leqslant C2^{-\gamma_{1}} \int_{0}^{t} (t-s)^{-\frac{2\gamma_{1}+\beta-1}{\alpha}} ||u(s)||_{C^{\gamma_{1}}} \mathrm{d}s.$$

Introduction	Main Results	Sketch of the proof
0000000	000000	000000000000000000000000000000000000000
Estimate for $\mathcal{I}_{2}^{\mathcal{I}}$	i	

Future works

Lemma 15

Assume $\alpha \in (\frac{1}{2}, 2)$. Under condition H^b_{β} with $\beta \in ((1 - \alpha) \lor 0, \alpha \land 1)$. For any $\gamma_1 \in (0, \alpha)$ and T > 0, there is a constant C such that for all $t \in (0, T]$, $j \in \mathbb{N}_0$ and all classical solution u,

$$|\mathscr{I}_{2}^{j}| \leqslant C2^{-\gamma_{1}} \int_{0}^{t} (t-s)^{-\frac{2\gamma_{1}+\beta-1}{\alpha}} ||u(s)||_{C^{\gamma_{1}}} \mathrm{d}s.$$

Proof.

Notice that

$$\int_{0}^{t} \int_{\mathbb{R}^{d}} \Delta_{j} p_{s,t}(-x) \tilde{b}(x) \cdot \nabla \Theta_{t}^{y} u(s,x) \mathrm{d}x \mathrm{d}s$$
$$= \int_{0}^{t} \int_{\mathbb{R}^{d}} \Delta_{j} p_{s,t}(-x) [\tilde{\Delta}_{j}, \tilde{b}(x)] \nabla \Theta_{t}^{y} u(s,x) \mathrm{d}x \mathrm{d}s$$
$$+ \int_{0}^{t} \int_{\mathbb{R}^{d}} \Delta_{j} p_{s,t}(-x) \tilde{b}(x) \cdot \tilde{\Delta}_{j} \nabla \Theta_{t}^{y} u(s,x) \mathrm{d}x \mathrm{d}s$$

By crucial lemma and commutator estimate, we complete the proof.

Recall that

$$\mathscr{D}_{z}^{y}f(x) = f(x + \sigma(x + \theta_{t}^{y}, z)) - f(x + \sigma(\theta_{t}^{y}, z)) - \mathbb{1}_{\alpha \ge 1}\tilde{\sigma}(x, z) \cdot \nabla f(x).$$

▶ Define

$$\mu_{\theta}(h) := \int_{\mathbb{R}^d} (1 \wedge |x|)^{\theta} |h(x)| dx \quad \text{and} \quad \langle f, g \rangle := \int_{\mathbb{R}^d} f(x) g(x) dx.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Introduction	Main Results	Sketch of the proof	Futur
0000000	000000	00000000000000000	
Estimate for \mathscr{I}_1^j			

Recall that

$$\mathscr{D}_z^y f(x) = f(x + \sigma(x + \theta_t^y, z)) - f(x + \sigma(\theta_t^y, z)) - \mathbb{1}_{\alpha \ge 1} \tilde{\sigma}(x, z) \cdot \nabla f(x).$$

▶ Define

$$\mu_{\theta}(h) := \int_{\mathbb{R}^d} (1 \wedge |x|)^{\theta} |h(x)| dx \quad \text{and} \quad \langle f, g \rangle := \int_{\mathbb{R}^d} f(x) g(x) dx.$$

Lemma 16

For any $\theta \in [0,1]$, there exists a constant $C = C(d,\theta) > 0$ such that for all $|z| \leq \frac{1}{2c_0}$, $f \in C^{\theta}$ and $g \in C^2$

$$|\langle \mathscr{D}_{z}^{y}f,g\rangle| \leqslant C|z|^{\theta} ||f||_{\infty} \left[\mu_{0}(|g|) + \mu_{\theta}(|\nabla g|)^{\theta} \mu_{\theta}(|g|)^{1-\theta}\right]$$

when $\alpha < 1$ and

$$\begin{split} |\langle \mathscr{D}_z^y f, g \rangle| &\leq C |z|^{1+\theta} \|f\|_{\mathbf{C}^{\theta}} \left[\mu_0(|g|) + \mu_1(|\nabla g|) + \mu_{1+\theta}(|\nabla^2 g|)^{\theta} \mu_{1+\theta}(|\nabla g|)^{1-\theta} \right] \\ \text{when } \alpha \geqslant 1. \end{split}$$

works

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

The key point of the proof

► For simplicity, we assume $\alpha < 1$ and $\phi_z(x) = \sigma(x + \theta_t^y, z)$. Rewrite

$$\mathscr{D}_z f(x) := \mathscr{D}_z^y f(x) = f(x + \phi_z(x)) - f(x + \phi_z(0))$$

▶ We can let $\overline{f}(x) = f(x + \phi_z(0))$. Their C^{θ} norms are the same. Therefore we assume that $\phi_z(0) = 0$ and there is a constant such that $|\phi_z(x)| \leq C(|x| \wedge 1)|z|$.

Main Results

Sketch of the proof

Future works

▲□▶▲□▶▲□▶▲□▶ □ のQで

The key point of the proof

For simplicity, we assume $\alpha < 1$ and $\phi_z(x) = \sigma(x + \theta_t^y, z)$. Rewrite

$$\mathscr{D}_z f(x) := \mathscr{D}_z^y f(x) = f(x + \phi_z(x)) - f(x + \phi_z(0))$$

▶ We can let $\overline{f}(x) = f(x + \phi_z(0))$. Their C^{θ} norms are the same. Therefore we assume that $\phi_z(0) = 0$ and there is a constant such that $|\phi_z(x)| \leq C(|x| \wedge 1)|z|$.

• Let $\Gamma_z(x) = x + \phi_z(x)$. By change of variable, we have

$$\langle \mathscr{D}_z f, g \rangle = \langle f, \mathscr{D}_z^* g \rangle,$$

where

$$\mathscr{D}_z^*g(x) = \det(\nabla_x \Gamma_z^{-1}(x))g(\Gamma_z^{-1}(x)) - g(x).$$

Noticing that

 $|\det(\nabla_x \Gamma_z^{-1}(x)) - 1| \leq |z|$, and $|\Gamma_z^{-1}(x) - x| \leq CC(|x| \wedge 1)|z|$,

we complete the proof.

Lemma 17

Let $\varepsilon \in (0, \alpha \wedge 1)$ and $\theta \in ((\alpha - 1) \lor 0, \alpha \wedge 1)$. For any $\gamma \in (0, \alpha - \varepsilon)$, there is a constant C > 0 such that for all $j \in \mathbb{N}_0$ and $t \in (0, T]$,

$$|\mathscr{I}_1^j| \leqslant C 2^{-\gamma j} \int_0^t (t-s)^{-(\gamma+\varepsilon)/\alpha} \|u(s)\|_{C^\theta} \mathrm{d}s.$$

Recall

$$\mathscr{I}_1^j = \int_0^t \int_{\mathbb{R}^d} \Delta_j p_{s,t}(-x) \tilde{\mathscr{L}}^{\alpha} \Theta_t^y u(s,x) \mathrm{d}x \mathrm{d}s.$$

Proof.

Let $\delta = \frac{\kappa}{c_0}$. We only prove the estimate for $\alpha \in (1, 2)$. The case $\alpha \in (0, 1]$ is similar and easier. Since the time variable and y does not play any essential role, below we drop the time variable and Θ_t^y for simplicity of notations. By definition we can make the following decomposition:

$$\tilde{\mathscr{L}}^{\alpha}u = \mathscr{A}_{\delta}u + \bar{\mathscr{A}_{\delta}}u$$

where

$$\mathscr{A}_{\delta}u(x) = \int_{|z| \leqslant \delta} \mathscr{D}_{z}u(x)\nu(\mathrm{d} z) \quad \text{and} \quad \bar{\mathscr{A}_{\delta}}u(x) = \int_{|z| > \delta} \mathscr{D}_{z}u(x)\nu(\mathrm{d} z).$$

Main Results

Proof.

$$\mathscr{I}_{1}^{j} = \int_{0}^{t} \langle \Delta_{j} p_{s,t}, \mathscr{A}_{\delta} u \rangle ds + \int_{0}^{t} \langle \Delta_{j} p_{s,t}, \bar{\mathscr{A}_{\delta}} u \rangle ds.$$

By Lemma16, we have

$$|\langle \Delta_j p_{s,t}, \mathscr{A}_{\delta} u \rangle| \leq C \int_{|z| \leq \delta} |z|^{1+\theta} \nu(\mathrm{d} z) ||u(s)||_{\mathbf{C}^{\theta}} \mathscr{B}(s,t),$$

where

$$\mathscr{B}(s,t) = \left| \sum_{i=0}^{1} \mu_i (|\nabla^i \Delta_j p_{s,t}|) + \mu_{1+\theta} (|\nabla^2 \Delta_j p_{s,t}|)^{\theta} \mu_{1+\theta} (|\nabla \Delta_j p_{s,t}|)^{1-\theta} \right|$$

Let $\alpha < 1 + \theta < \alpha + \frac{\varepsilon}{2}$. By crucial lemma, we obtain that

$$\begin{split} &|\int_0^t \langle \Delta_j p_{s,t}, \mathscr{A}_\delta u \rangle \mathrm{d}s| \leqslant C \int_0^t \|u(s)\|_{\mathbf{C}^\theta} \mathscr{B}(s,t) \mathrm{d}s \\ &\lesssim 2^{-\gamma j} \int_0^t (t-s)^{-\frac{\gamma}{\alpha}} \|u(s)\|_{C^\theta} \mathrm{d}s + 2^{-(\gamma-\varepsilon)j} \int_0^t (t-s)^{-\frac{\gamma}{\alpha}} \|u(s)\|_{C^\theta} \mathrm{d}s, \end{split}$$

where

$$\int_0^t \mu_{1+\theta}(|\nabla^j \Delta_j p_{s,t}|) \|u(s)\|_{C^\theta} \mathrm{d}s \lesssim \int_0^t \int_{\mathbb{R}^d} |x|^{\alpha-\frac{\varepsilon}{2}} |\nabla^j \Delta_j p_{s,t}(x)| \|u(s)\|_{C^\theta} \mathrm{d}s,$$

$$\int_0^t |\langle \Delta_j p_{s,t}, \bar{\mathscr{A}_{\delta}} u \rangle| \mathrm{d}s \lesssim 2^{-\gamma j} \int_0^t (t-s)^{\frac{\gamma}{\alpha}} ||u(s)||_{\infty} \mathrm{d}s.$$

Introduction	
0000000)

Main Results

Sketch of the proof

Future works

Lift lemma

Lemma 18

Assume one of the following conditions holds,

 $\blacktriangleright \ \alpha \in (0,2), b \equiv 0 \text{ and let } \beta = 1.$

• $\alpha \in (\frac{1}{2}, 2)$ and condition (\mathbf{H}_{β}^{b}) holds with $\beta \in ((1 - \alpha) \lor 0, \alpha \land 1)$.

Under condition ($\mathbf{H}^{\sigma}_{\mu}$), for any

 $\gamma \in (\alpha, \alpha + \alpha \wedge \beta), \quad \delta \in [0, \alpha),$

there is a constant C_T such that for all $\phi \in C_0^{\infty}(\mathbb{R}^d)$ and all $t \in (0, T]$,

$$\|P_t^{\sigma,b}\phi\|_{B^{\gamma}_{\infty,\infty}} \leqslant C_T t^{-\frac{\delta}{\alpha}} \|\phi\|_{B^{\gamma-\delta}_{p,\infty}}.$$
(3.8)

Notice that P^{σ,b}_tφ = P^{σ,b}_tP^{σ,b}_tφ and (α, α + α ∧ β) − α ⊂ (0, α), by this C-K property, we obtain the main result.

▲□▶▲□▶▲□▶▲□▶ ■ のへの

▶ We prove that the solution of SDE driven by cylindrical Lévy process has a density in Sobolev space *H*^{*s*,*r*} with

$$s < \alpha - (\alpha - 1) \lor (1 - \beta)$$
 and $r < \frac{d}{d - \alpha + s + \beta - 1}$,

but this result does not imply that this density is continuous. So how to improve the index s and how to make r greater are interesting.

► In our work, we only consider the strong Feller property, which only depend on the distribution of X_t^x . Moreover, the continuous property of σ is enough to guarantee the existence of weak solution. So how to drop the assumption that σ is Lipschitz.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Sketch of the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ∽ � ♥

Thanks for your attention!