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Motivation

» Suppose a space X = R? is full of gas. The gas is observed on a time interval
[0,T),and V = R? is the tangent space of X standing for the velocity of the
gas.

» For any fixed time ¢, the quantity f (¢, z, v)dzdv stands for the quantity of par-
ticles in the volume element dzdv centered at (x,v). Obviously, f is a non-
negative function and we assume that it is very nice.

» Firstly, we assume that there is no collision among the gas and each particle
travels at constant velocity, along a straight line. Then we have the following
invariance alone the characteristic line:

f(t,ZE,V) = f(O,ZC - tV,V).
In other words, f is a solution to the following transport equation
8tf+va;f =0.

» However, particle is not ghost, there are many collisions among the gas.
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» We assume that the gas is dilute enough that the effect of interactions involving
more than two particles can be neglected, which means that we only consider
binary collisions. Furthermore, we assume that collision is elastic, which is the
following meaning

{V/+V;:V+V*, (.0

VP + Vi = v+ val?,

where v, v, stand for the velocities before collision, and v, v/, stand for the
velocities after collision.

» Notice that there are d+ 1 equations but 2d
unknowns. Therefore, the solution of the
velocities after collision has d — 1 degrees
of freedom. Actually, there is a o € S41
such that the solution of (1.1) have the fol-
lowing o-representation:

vV _(I-0®0c oQ®o v
v ] T cR0 I-o®c) \v.)’

where 0 ® ov := (v,0)0.
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» Under the above assumption and other assumptions(see [1]), in 1872 Boltzmann
was able to derive a quadratic collision operator ) which accurately models the
effect of interactions on the f:

Of(t,z,v) +v-Vaf(t,z,v)=Q(f, f)(t,z,v), (1.2)

where
Qo= [ [ (#6090 = £)a() Bl v a)dode,

where B : R% x S?~! — R is a non-negative function called collision kernel and
defined as

B(v,0) :=|v|"b(cosh)
where cosf := |(v,o)|/|v| and b, 7 is related to the property of the gas with

- hen th has hard potentials
b(s) = s~ "% a € (0,2),7 € [-a, +00) when the gas has hard po e1.1 ials,
(=d,—a) when the gas has soft potentials.

» The equation (1.2) is called Boltzmann equation.

[1] C. Villani: A review of mathematical topics in collisional kinetic theory. Handbook of Fluid Mechanics.
Ed. S. Friedlander, D.Serre, 2002
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» By an elementary calculation(see [1]), the collision operator has the following
Carleman’s representation:

Q=2 [ 5= mote ) = s wo(s)]
x B(h —w,w/|w|)|w|*~*dhdw.

> When b(s) = s~ ', we have the following decomposition:

Q(f,9) = g(V)H;(v) + L(f,9),

where
|h _ w|v+1+a

Hy(v) = 2/Rd /{MZO} (f(v—h) —f(v—h+w)) e dhduw,

and
= Ki(v,w)
L(f,9) = /Rd (9(v—|—w) —g(v)) ofera dw
with
Kf(V,’UJ) = 2Ah . f(v — h)|h _ w"7+1+adh.

[1]Z.-Q. Chen and X. Zhang, LP-maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators.
J. Math. Pures Appl. (9), 116 (2018), 52-87
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» We linearize the Boltzmann equation and get a equation involves non-local oper-
ator of fractional Laplacian type:

K¢(v,w)

atg—&—v.vxg:p.v./ (g(V—Fw)—g(v))de—Fng.

Rd

» Notice that if Ky = C,
p.v. /Rd (g(v +w) — g(v)) %dw = —(=A)Zg(v).

K¢(v,w
%dw as a o order term

and gH; as a zero order term in g. Hence, we neglect the term gHy and consider
a generality PDE.

» Therefore, we regard p.v. [5q (g(v +w) — g(v))
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Our model

» In our work, we assume « € (0, 2) and consider the following non-local PDE:

eult,z,v) + L ult,x,v) + v - Vau(t,,v) = f(t,2,v), t 20,
u(O,x,v):: @(m,v),
(1.3)

where

.,"f,gfi)u(x,v) = p.v./

RrRd

(u(z, v+ z) —u(z, v)) k(t,x, v, z)v(dz),

with some measurable coefficient x : Ry x R®*¢ — R, and measure v in the

form of

v = [T [ tateu),

where p is a symmetric finite measure in S~ with the following non-degenerate

property

inf /SdF1 |(e,w)|p(dw) > 0.

eesd—1

» Question:  Existence and Uniqueness.
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Scaling

» Let us consider the elliptic equation:
(—A\,)%u +v-Veu=0.
> We suppose ue(x, v) = u(c’z, ev) still satisfy the equation, then we have

(—Ay) 2ue(z,v) = 4 (=AV) 2u(ePz, ev)
v Vaue(z,v) = v V:cu(&’ﬁl‘, ev) = B=a+1.
e ((—Av)%u(aﬁm, ev) +ev- Vzu(sﬁx75v)) =0

» Notice that V,, ~ VT is very singular.
» Naturally, we introduce the following distance in R?? by

|21 — 22]a := |21 — x2|1+% + |vi — va| where z; = (x4, vi) € RY x RY.
» Moreover, we introduce the anisotropic Holder-Zygmund space
s 2d
Coi= {f € S R flloy = f o + fles < oo},
where

[flo; += sup 1851 flloo/[BLs,  Onf(2) == (2 +h) — f(2).
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Assumption

» We introduce the Holder-Zygmund space in R? and R? first,

Cii= {f € B 5 R: |flley i= I/l + e < o0},
where

[flos i= sup 185 Fllso/IRI°,  Snaf(@,v) == f(a+ h,v) = f(z,v).

The space C5 is the same.
(Hg:gdd) There are some 8 € (0,a), 0 € [, a(1l + «)) and ¢; > 0 for i = 0,1 such that
forallt € Ry and z,v € R?

a(t,z,v) Zeo KON o VKOs < e
c, ™«

Hcf
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Known results
2012 (Alexandre)
When ¢ = 0 and Z(%) = A2, there is a L>-regularity:

1A ull g2 + 1AV ull g2 < Cllfl g2

» This estimate comes from the Fourier’s transformation.

Future works
[e]e]e}
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Known results

2012 (Alexandre)
When ¢ = 0 and Z(%) = A2, there is a L>-regularity:

1A ull g2 + 1AV ull g2 < Cllfl g2

» This estimate comes from the Fourier’s transformation.

2018 (Chen-Zhang)
Assume ~ has both upper bounded and lower bounded. There is a L”-regularity
for any p € (1, +00):

e a
182 ullze + |A? ull e < Cpl|fllzr-
» They get this estimate by the interpolation and a crucial lemma:

_(Q4o)(m=B) n—n

/ PV [V s (V)| dzdy < Ot — 5)~ =m0
Rd

where ps +(x,v) is the heat kernel of the operator .Z,E‘f,) when & is independent

with (z, v).
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2019 (H.-Peng-Zhang)

Assume v(dz) = |z|79"%dz, & € C5°(R?*?) with lower bounded is indepen-
dent with time ¢, and for any ¢, j € N there is a C; ; such that for all z,v € R4
. , C, .
i+1 1,7
[V Vik(z, v)| < TH e

Then there is a non-negative function p:(z, v, y, w) such that for any (y,w) €
R, pe (-, y, w) € C5°(R*) and forany ¢ € Cy, [poa ¢(y, w)pe(, v, y, w)dydw
solves the PDE (1.3) with f = 0.

» This result comes from the Malliavin calculus.
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2019

2019

(H.-Peng-Zhang)

Assume v(dz) = |z|797%dz, k € C°(R??) with lower bounded is indepen-
dent with time ¢, and for any ¢, j € N there is a C; ; such that for all z,v € R4
‘ , O,
i+1 1,7
Ve Vik(z,v)| < TH e

Then there is a non-negative function p:(z, v, y, w) such that for any (y,w) €
R4, pe(-, y, w) € Cp°(R?*®) and forany ¢ € Gy, [poa ¢ (y, w)pe (2, v, y, w)dydw
solves the PDE (1.3) with f = 0.

This result comes from the Malliavin calculus.

(H.-Wu-Zhang)
Assume ¢ = 0 and v(dz) = |z|7¢*dz. Under the condition (Hy bdd) there is
a Schauder estimate

up (IOl _gan + lut@)lcges) <€ sup (@

te[0,T) te(o,

o+ 1F g )-

THo
C,
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Anisotropic Littlewood-Paley decomposition and Besov space

» Denote by B¢ the unit ball with radio 7 in metric space (R*?, ]| - |,), i.e.

Bl :={(&n) € R*; [(&,m)]a <7}
Let ¢¢ be a C*°-function on R2¢ with

¢6(&,m) =1 for (&,m) € BY and ¢5(€,m) =0 for (€,n) ¢ Bs.

» For (¢,7) € R*®and j € N, define

P5(E,m) = g§ (27 TV g 27Ty — g (27 DD 9= Gmmy,

Future works
[e]e]e}
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Anisotropic Littlewood-Paley decomposition and Besov space

» Denote by B¢ the unit ball with radio 7 in metric space (R*?, ]| - |,), i.e.

B :={(&n) € R*; |(€,m)la <7}
Let ¢¢ be a C*°-function on R2¢ with

¢6(&,m) =1 for (&,m) € BY and ¢5(€,m) =0 for (€,n) ¢ Bs.

» For (¢,7) € R*®and j € N, define

5 (€,m) := 9327 FIE, 27T ) — g (27 VU Tg 27U,
» It is easy to see that for j € N, ¢7(£,7) =

¢ (27 0FIU=D¢g 9=G=1n) > 0 and

1.PNG

of
R = B3 U (Usen (B \ Bon) ).

> Notlce that {5 }jen, is a partition of unity

Future works
[e]e]e}

suppgi)? C Bgj+1\Bgj—1(see the picture left),

Z(ﬁj &) =527 27 ) 5 1,k oo
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» For given j € No, the block operator A is defined on .’ by
Ajf(x,v) == F 57 (N))(@,v) = F (@) * f(,v)

= Z7'eD(yw)fle—2" VY v — 270 Dy dydw.

R2d
» For j € Ny, by definition it is easy to see that
A? = ASAY, where A% := A% + A%+ A%, with A%, =0, (2.1)
and AY is symmetric in the sense that
(A7 f.9) = (f. Ajg).
» The cut-off low frequency operator Sy, is defined by

k—1

Sefi= Y 850 = [ G- 2y - 2 u)dydu - .
) R
=0

2.2)
» We rewrite (2.2) as

F= 451,
j=0

which is called the Littlewood-Paley decomposition.
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Definition 1 (Anistropy Besov space)
For any s € R and p € [1, oc], the anistropy Besov space B, . is defined by

Bloo(R?) i= {f € 7' (") : |fllpz o 1= 5up (271 1) < o0}

j=0

Proposition 2 (H. Triebel)
Forany s >0,

CH(R™) = Bl o (R*) = CI* (R*) N C(R™).

Moreover,

L= (R*Y) C BY o (R*).

» The proof of the proposition 2 can be found in [1].
[1] Serguei Dachkovski, Anisotropic function spaces and related semi-linear hypoelliptic equations,
Math. Nachr. 248/249 (2003), 40-61.
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Notation

» We introduce L2 LY and LI L% norm in the form of

s = ([, ([ 1roras) o)™
ez = ([, ([ 1rora)ar) ™

[ 1’ = sup 1561

y€ER

where

» Notice that LELZ # LYLE. In fact, when p > ¢, we have

IfllLare < Ifllzera-
» Here we define a L”’? norm:

[ fllee-a == [[fllzaze VIIflleere-

Future works
[e]e]e}
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Classical solution

In our work, we consider the existence and the regularity of the following classical
solutions.

Definition 3

Fix ¢ € Cp(R??) and f € L°°(R*?). We call a continuous function u : (0, c0) X
R?*? — R with u € Li2.((0, 00); CAT¢ N C$V1T#) a classical solution of PDE (1.3)
if forall¢ > 0 and z,v € RY,

¢
u(t, z,v) = oz, V) +/ (.,2”,,50“,) +v- Vm)u(r,x,v) + f(r,z,v)dr.
0
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Our assumption

(Hf 5) There are some 3 € (0,c),0 € [8,a(1 4 «)) and ¢; > 0 fori = 0,1,2,3 such
that forallt € Ry, z,v,y,w € R*and 7 > 0,

inf (w-2)2k(t,z,v, 2)v(dz) = cor®™?, (2.3)

wesd—1 |z|<7

/ |2k (t, 2, v, 2)v(dz) < err® ™, (2.4
|z|<r

/ |z| |k(t,z,v,2) — Kk(t,y,w, z)|v(dz) < car®” “(Jz —y|1+ia + |v—w|6).
|z|<r
2.5)

» Notice that condition (H'C“ bdd) is stronger then condition (Hf ).
» Notice that (2.3) is strlctly weaker then the condition K > co.
For example, we let k(x, v, 2) = 1y (zv) (2) where

V(z,v) ={z e R?; < JE(x,v)) < 8}

with some measurable function £ : R*¢ — S~! and § > 0. Then this & satisfies
condition (2.3) but does not have lower bounded.
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Main Results

Theorem 4 (Holder estimate)

Assume o € (0,2) and f = 0. Under the condition Hg g, fix any p, q € [1, +oc0] with

dla+1)
p

0 := +£l<ﬂ.
q

(i) For any v € (0, + B), there is a constant C > 0 such that for all classical
solutions of PDE (1.3) u(t,z,v) and all 0 < t < T,

_ate
lu®)llcy < Ct™ 75 ||llLra-
(ii) For any v € (0, + 0), there is a constant C' > 0 such that for all classical
solutions of PDE (1.3) u(t,z,v) and all 0 < t < T,

l[u(?)

21+©
= Nllea-

< Ct™

I
cl

v

» When 1l < a+ 8 < a+ «, which is that o > % we obtain the gradient estimate
for variable v.

> Whenl+a < a+6 < a+ a(l + «), which is that o > ‘/52*1, we obtain the
gradient estimate for variable x.
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Main Results

Theorem 5 (Existence of the fundamental solution)

Assume o € (‘/52*1 ,2) and v(dz) = |2| %" “dz. Under the condition (H z) with
0 > 1, for any 0 < s < t, there is a non-negative function p .(x,v,y,w) in R? x
R? x R? x R? which has the following property: for z,v € R?, ps¢(x, v, ) € LPY
with

d 1 d
p7q€ [1,+OO], —+ —+ =1 and 6/ = M_«__? </8’

Q|

1 1
p ¢
such that for any uniform continuous bounded function ¢ in R*? and continuous
bounded function f,

ult) = [ phalviw)e(y, wdydu
/ / pst z,v,y,w )f(S:y»w)dydU)d&
R2d

is a classical solution of PDE (1.3) with

lu(t) —¢llgo . —0 as t—0.




Part 3: From operator to process
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Related process

> Welet ko(t, 2) : Ry x RY — Ry with ko (t, 2) = ko(t, —2) satisfying

inf / (w- 2kt z,v, 2)r(dz) > cor®™ %,
wesd—1 lz|<r

/ |z2k(t, @, v, 2)v(dz) < err® @,
[z|<r

» From (3.1), we obtain that for any 5 < o < ,

Future works
[e]e]e}

3.1)

/ BECEREOEDY / (2P w(t, 3, v, 2)w(d2)
z|<r k=0 2—

E=lr<|z|<2—Fr

< C12276T’37Q,

/ |2 k(t,z, v, 2)v(dz) < 12277
|z|2r

» Hence v,(dz) := ko(s, z)v(dz) is a Lévy measure.
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> Let N(dt,dv) be the Poisson random measure on R%*! with intensity measure

ve(dv)dt, and N(dt,dv) := N(dt,dv) — v¢(dv)dt the compensated Poisson
random measure.

» For s < ¢, define

t t
L ::/ / vN(dr,dv)+/ / vN(dr, dv),
s i<t s Jvi>1

and Ko = (X, Vaur) == ([} Lordr, Let).
» Notice thatif X s = x and V; s = v, then

t
Kol =(@+(t—s)v+ / L, dr,v+ Lsy).
» The infinitesimal generator of K77 is fo(z) + v - Vg, where

.,Sfo(f,)u(t,x,v) = p.v./

R

(uta, v+ 2) = ul,v) ) mo(t, 2w (dz),
d
which means that

u(t, z,v) / f(s, K37 )ds) +IE((,0(K§7’:))

is a classical solution of (1.3) when (¢, z, v, 2) = ko(t, 2).
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» By Ito formula, this classical solution is unique. Therefore, we obtain a presen-
tation of the (1.3) when & is independent with x, v.

» Next, we can get the existence and smoothness of the density of K ; denoted by
ps,t(z, v). Notice that

Psg(x,v) == E(g(KS})) = / Ps,t(y, w)g(z + (t — s)v +y,v + w)dydw.
RQd

» For simplify, we define I's ;g(x,v) := g(z + (t — s)v,v) and then we have
P19 ="Tsps *g.
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Crucial lemma

Lemma 6

(i) Forany v > 0 and 8; € [0,) fori = 1,2 and n,m € Ny, operator J; is
A?Fsﬂg or F;%A?Fs,b there is a constant C' > O(which is independent with ko

only depends on c1) such that for any nonnegative measurable f : Ry — R,
0 > P2 and all j € Ny,

t p
/ /d ||t |v|P2 |V 2V T Hps . (, V)| £ (s)dzdvds
o R . (3.2)
< 02[((1+a)m+n)—7—((1+a)51+ﬂ2)]j/ (t — )~/ f(s)ds.
0

(ii) Forany T > 0, p,q € [1,+o0] and v > 0, there is a constant C such that for
allj eNoand0 < s <t < T
o i _xte
|AFT s tps,tllLea < C277 (8 —s8)" o,

where F F
O=1+a)(l—=-)+1——.
( ) p) .
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The key point of proof

» Notice that

N(t,dv) — N(s,dv) L N(t — s,dv) L (t — )5 Ny (1, dv),

where the intensity measure of N; is «((t — s), v)v(dv). Therefore

d 1 ~
Vie @ (¢ — 8)5 Vo,

where the Lévy measure of V; . is ((t — s)r, v)v(dv). Furthermore

(d) lta 1~
K = ((t—S) “ XO,lv(t_S)QVO,l)v

where X, = fol Vordr.

» We denote by o1 the density of (Xo,1, Vo,1), then

_(d (ta)dy 1+
Poi(a,v) = (t—s)~ (&t Ta)

Boa((t—s) o a,(t—s) ).

Future works
[e]e]e}
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The key point of proof

» Notice that

N(t,dv) — N(s,dv) L N(t — s,dv) L (t — )5 Ny (1, dv),

where the intensity measure of N; is «((t — s), v)v(dv). Therefore

d 1~
Vs,t <:) (t — S) @ V()’1,

where the Lévy measure of V; . is ((t — s)r, v)v(dv). Furthermore

(d)

(d) lta 1~
K = ((t—S) “ XO,lv(t_S)QVOJ)v

where X, = fol Vordr.
» We denote by o1 the density of (Xo,1, Vo,1), then

d (H—ﬂ)d _lto _ 1
Pet(w,v) = (t—s)"&F "Boa((t—s)" = @, (t—s)"=v).
» Condition
inf / (w-2)2k(t,,v, 2)v(dz) = cor®™?, (3.3)
wesd—1 |z|<r

guarantee that for any n, m € Ny and §; € [0, &), there is a constant C' such that

/2d 2|t [v] P2 |V T o 1 (2, v)|dedy < C.
R



Part 4: Our approach
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Our approach

» Firstly, we use a technology of translate alone the characteristic line (zo + tvo, vo),
let @a(t, z,v) := u(t,x + xo + tvo, v + vo) and get a new equation:

{5‘tﬂ(t,x,v) + L(t, 2, v) + v - Veult,z,v) = f(t,z,v), @

ﬁ(07 Z, V) = @(.’L V)7

where f(t,z,v) = f(t,x + zo + tvo, v + Vo), @(z,v) = @(x + 20,V + Vo)
and %(z,v) = k(x + 20 + tvo, v+ vo).

» Then we have the following presentation
t t .
a(t,z,v) = / Ps: (féa) — fé:))ﬂ(s,x,v)ds + / P f(s,x,v)ds
0 0
+ P07i¢(x)a

where Ko (t) = k(2o + tvo,vo) and fég) is a infinitesimal generator of some
process introduced in the part 3.
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» Next step is a highlight point. We operator the block operator A} on both sides
and only look at the point zero:

t t
A%a(t,0,0) = / A g_g;§>)a(s,o,0)ds+/ AP, ,f(s,0,0)ds
JO JO
+ A Po+(0,0).

» Notice that Aju(t, zo + tvo,vo) = Aj(t,0,0). We take the supremum of
the initial point (o, vo) and get the estimate of ||Afu(t)|lec. Then by taking
sipremum of j, we have for some ¢ > —1 and any € [0, @):

t
¥ -L [S]
lu®ll sy 5/ (t—9)"llu(s)llpy s+t~ =0 [@lLra.
' 0

» Notice that a highlight point here is that we turn the convolution P ; f into an in-
ner product (ps ¢, f). Therefore, we use our crucial lemma and get the regularity
of the space.
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Volterra-type Gronwall inequality

Lemma 7 (Volterra-type Gronwall inequality)

Assume A > 0. For any 60,9 > —1 and T > 0, there exists a constant C' =
C(A,0,9,T) > 0 such that if locally integrable functions f : Ry — R satisfy

sy <4 f (t— ) f(s)ds + A, te (0,T],

then

fey<cot’, te(o,1).

4

» Whenvy + 0 < o, == (+0) s a ocal integral function on [0,7"]. We obtain
main result for v € [0, ) and © < @ — 7.

» To lift the limitation of ~ from [0, @) to [0, & + ), we use a lift lemma by the
flow property.

» The proof can be found in [1].

[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation.
J.Funct. Anal., 258 (2010), 1361-1425.
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Lift lemma
Lemma 8
Assume o € (0,2) and f = 0. Under condition (Hj g), for any
v € (at+pB), 6€(0,a),

there is a constant Cr such that for all ¢ € C§° (Rd), all classical solutions of (1.3)
and all t € (0,7,

_9
lu(®llsy . < Crt™=llellgy=s- 4.2)

v

Lemma 9

Assume o € (0,2). Under the condition (Hg g), for any v € (o« — 8,) and n €
(0, 0), there is a constant C > 0 such that for all 0 < t < T,

_x
lu@l o <O a
C;

cit>(c)) )

» Notice that u, (¢, z,v) := u(t + s,z,v) is the classical solution of (1.3) when
© = u(s). Then by the uniqueness of the classical solution, we have

8 t
lu@®llsy . St lu(z)lsys-
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Existence

» For the existence of the classical solution, we use the probability representation.

» Firstly, we let k. := (k +¢) A % and k. has both lower bounded and upper
bounded. We make a modifier of it and assume x. € C°.

» When v(dz) = |z|~%~*dz, there is an interesting transform lemma:

Lemma 10 (H.-Peng-Zhang 2019)

Givend € Nand co > 1, let k(z,2) : R? x RY — [cal, co] be a smooth function
with bounded derivatives. For any o € (0,2), there is a measurable map o(x, z) :
R? x RY — R? such that for any nonnegative measurable function f,

dz dz
00(x,2)——— = 2)k(T, 2) ——-
Rdf (7 )|Z|d+a ]Rdf() (7 )‘Z|d+o‘
Moreover, o enjoys the following properties:
» o(z,0) = 0and if k(z, —2) = k(z, 2), then o(z, —z) = —o(x, 2).
» Foralli,j € No, thereis a C;; > 0 such that for all x € R% and z € R,
IVeVio(e,2)| < Cijl2)*,

where Cy; is a polynomial of ||V'V2k|co, m =1,---,4,n=0,--- ,].
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» When k. € Cy°, we find a o, satisfy the condition in transform lemma. Let
(Xs,t, Vs,¢) be the solution of following SDE

dXs,t = VS,tst7
stg,t = fle O—E(X\f,t77 ‘/se,t77 Z)N(dZ: dt):

where L; is a standard o-stable process and N (t, A) := > _, 1ar,ea-
» Notice that this time

W(t) = B (0K @,9)d5) + Bo(KE ()

where K¢ ,(z,v) = (X5, +x + (t — s)v, V5, + V), is a classical solution of
(1.3) when ¢ and f is smooth.

» Finally, by Holder estimate (Theorem 4), we obtain that v — w which is a
classical solution of (1.3).



Part 5: Some techniques

o F = E E 9DAC¢
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» In our work, A‘;I“Syt * FSVtA‘;. This is very bad.
» Fortunately, we have the following observation

Lemma 11

Fort > 0and j € Ny, define

e = {f € No : 2° < 2%(27 + 12077 97 9% (2" +t2<1+“>"’)}.

(i) LerO < s<tandj €N Forany{ ¢ @j._s, it holds that

Some techniques
(o] e}

(A3 Teeat) = [ A2f(@,v) TurAtae, v)dady = .

(ii) For any B > 0, there is a constant C = C(c1, 8) > 0 such that for all j € Nand t > 0,
. N B ) N\ B
Z 2-6¢ < C(Q*J +t2(a*1)3) , Z 288 < 0(23 +t2(1+°‘)7> .52

t t
eeej Eeej

Future works
[e]e]e}

(5.1)

» This lemma tell us that

AT, =Y AIT AL ~ AT, A,

(=0
» The proof can be found in [1].

[1] Z. Hao, M. Wu, and X. Zhang, Schauder’s estimate for nonlocal kinetic equations and its applica-

tions. Available at arXiv:1903.09967.
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» There is a useful commutator estimate.
Lemma 12
Assume a € (0,2) and condition (H3) with 8 € (0, « A 1). Define
fo(@,v) = f(@,0+2) — f(z,0) = 2° Vo f(z,v)

where 2% := 21451 + 21|, j<11a=1.

(i) Foranye > 0, there is a constant C such that for all f € Cp°, j € No and z,v € R4

/I - 1A, K1f= (2, V)|p(dz) < 27980 fll gate-

(i) Foranyn € (—8,0] and € > 0, there is a constant C such that for all f € C°, j € N

and x,v € R?

/‘ ‘ (A3, K12 (z, v)lv(dz) < 279D £l patetn-
z|<1 v

(5.3)

Future works
[e]e]e}

» The key to the proof of this lemma is the Bony decomposition.

fg= Z AifAjg = Z AifAjg+ Z AifAjg+ Z AifAjg

i,5=0 i>j41 j>it1 (i—j|<1
=f>g+f<g+fog



Part 6: Future works

o F = E E 9DAC¢
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Future works

» We prove the existence of the fundamental solution of the non-local kinetic equa-
tion (1.3). Furthermore, we show that this is a ILP*? solution. However this result
does not imply that it is continuous and satisfies

atp:,t + g;iflv)p:,t +v- vng,t =0.

> We can not deal with the existence when v(dz) # |2|7?"“dz. The reason
is there is not a transform lemma when Lévy measure is singular. We try to
use some continuity methods and vanishing viscosity approach, but they are not
work.

» Actually, the density f in Boltzmann equation is a distribution. It may not have
some high regularity. However, in our model, we consider the classical solution
with CLV*+e N C27¢ regularity. We want to built a mild or weak solution
theorem in the next step.



Thanks for your attention!

o F = E E 9DAC¢
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