Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

Heat kernel of nonlocal kinetic operators

Zimo Hao¹ 郝子墨

Based on a joint work with Xicheng Zhang¹

¹Wuhan University

Peking University-2019

School of Mathematical Sciences, Peking University

Beijing · August 09, 2019.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction 000000000	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
Outline					

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

► Introduction

► Main results

From non-local operator to process

► Our approach

► Some techniques

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

Part 1 : Introduction

Introduction OOOOOOOOOO	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
Motivation					

- Suppose a space $X = \mathbb{R}^d$ is full of gas. The gas is observed on a time interval [0, T], and $V = \mathbb{R}^d$ is the tangent space of X standing for the velocity of the gas.
- For any fixed time t, the quantity f(t, x, v)dxdv stands for the quantity of particles in the volume element dxdv centered at (x, v). Obviously, f is a non-negative function and we assume that it is very nice.
- ► Firstly, we assume that there is no collision among the gas and each particle travels at constant velocity, along a straight line. Then we have the following invariance alone the characteristic line:

$$f(t, x, \mathbf{v}) = f(0, x - t\mathbf{v}, \mathbf{v}).$$

In other words, f is a solution to the following transport equation

$$\partial_t f + \mathbf{v} \cdot \nabla_x f = 0.$$

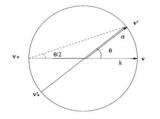
▶ However, particle is not ghost, there are many collisions among the gas.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
000000000	00000000	00000	0000000	000	000

We assume that the gas is dilute enough that the effect of interactions involving more than two particles can be neglected, which means that we only consider binary collisions. Furthermore, we assume that collision is elastic, which is the following meaning

$$\begin{cases} \mathbf{v}' + \mathbf{v}'_* = \mathbf{v} + \mathbf{v}_*, \\ |\mathbf{v}'|^2 + |\mathbf{v}'_*|^2 = |\mathbf{v}|^2 + |\mathbf{v}_*|^2, \end{cases}$$
(1.1)

where v, v_* stand for the velocities before collision, and v', v'_* stand for the velocities after collision.



Notice that there are d+1 equations but 2d unknowns. Therefore, the solution of the velocities after collision has d − 1 degrees of freedom. Actually, there is a σ ∈ S^{d−1} such that the solution of (1.1) have the following σ-representation:

$$\begin{pmatrix} \mathrm{v}' \\ \mathrm{v}'_* \end{pmatrix} = \begin{pmatrix} \mathbb{I} - \sigma \otimes \sigma & \sigma \otimes \sigma \\ \sigma \otimes \sigma & \mathbb{I} - \sigma \otimes \sigma \end{pmatrix} \begin{pmatrix} \mathrm{v} \\ \mathrm{v}_* \end{pmatrix},$$

where $\sigma \otimes \sigma \mathbf{v} := \langle \mathbf{v}, \sigma \rangle \sigma$.

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

▶ Under the above assumption and other assumptions(see [1]), in 1872 Boltzmann was able to derive a quadratic collision operator Q which accurately models the effect of interactions on the f:

$$\partial_t f(t, x, \mathbf{v}) + \mathbf{v} \cdot \nabla_x f(t, x, \mathbf{v}) = Q(f, f)(t, x, \mathbf{v}), \tag{1.2}$$

where

$$Q(f,g)(\mathbf{v}) := \int_{\mathbb{R}^d} \int_{\mathbb{S}^{d-1}} \left(f(\mathbf{v}'_*)g(\mathbf{v}') - f(\mathbf{v}_*)g(\mathbf{v}) \right) B(\mathbf{v} - \mathbf{v}_*, \sigma) \mathrm{d}\sigma \mathrm{d}\mathbf{v},$$

where $B:\mathbb{R}^d\times\mathbb{S}^{d-1}\to\mathbb{R}$ is a non-negative function called collision kernel and defined as

$$B(\mathbf{v},\sigma) := |\mathbf{v}|^{\gamma} b(\cos\theta)$$

where $cos\theta := |\langle \mathbf{v}, \sigma \rangle| / |\mathbf{v}|$ and b, γ is related to the property of the gas with

 $b(s) \asymp s^{-1-\alpha}, \alpha \in (0,2), \gamma \in \begin{cases} [-\alpha, +\infty) & \text{when the gas has hard potentials,} \\ (-d, -\alpha) & \text{when the gas has soft potentials.} \end{cases}$

▶ The equation (1.2) is called Boltzmann equation.

[1] C. Villani: A review of mathematical topics in collisional kinetic theory. Handbook of Fluid Mechanics.
 Ed. S. Friedlander, D.Serre, 2002

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

▶ By an elementary calculation(see [1]), the collision operator has the following Carleman's representation:

$$\begin{split} Q(f,g)(\mathbf{v}) &:= 2 \int_{\mathbb{R}^d} \int_{\{h \cdot w = 0\}} \left[f(\mathbf{v} - h)g(\mathbf{v} + w) - f(\mathbf{v} - h + w)g(\mathbf{v}) \right] \\ &\times B(h - w, w/|w|) |w|^{1-d} \mathrm{d}h \mathrm{d}w. \end{split}$$

• When $b(s) = s^{-1-\alpha}$, we have the following decomposition:

$$Q(f,g) = g(\mathbf{v})H_f(\mathbf{v}) + L(f,g),$$

where

$$H_f(\mathbf{v}) = 2 \int_{\mathbb{R}^d} \int_{\{h \cdot w = 0\}} \left(f(\mathbf{v} - h) - f(\mathbf{v} - h + w) \right) \frac{|h - w|^{\gamma + 1 + \alpha}}{|w|^{\alpha + d}} \mathrm{d}h \mathrm{d}w,$$

and

$$L(f,g) = \int_{\mathbb{R}^d} \left(g(\mathbf{v}+w) - g(\mathbf{v}) \right) \frac{K_f(\mathbf{v},w)}{|w|^{\alpha+d}} \mathrm{d}w$$

with

$$K_f(\mathbf{v}, w) := 2 \int_{\{h \cdot w = 0\}} f(\mathbf{v} - h) |h - w|^{\gamma + 1 + \alpha} \mathrm{d}h.$$

[1] Z.-Q. Chen and X. Zhang, L^p -maximal hypoelliptic regularity of nonlocal kinetic Fokker-Planck operators. J. Math. Pures Appl. (9), 116 (2018), 52-87

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

We linearize the Boltzmann equation and get a equation involves non-local operator of fractional Laplacian type:

$$\partial_t g + \mathbf{v} \cdot \nabla_x g = \mathbf{p.v.} \int_{\mathbb{R}^d} \left(g(\mathbf{v} + w) - g(\mathbf{v}) \right) \frac{K_f(\mathbf{v}, w)}{|w|^{d+\alpha}} \mathrm{d}w + gH_f.$$

▶ Notice that if $K_f \equiv C$,

p.v.
$$\int_{\mathbb{R}^d} \left(g(\mathbf{v} + w) - g(\mathbf{v}) \right) \frac{K_f(\mathbf{v}, w)}{|w|^{d+\alpha}} \mathrm{d}w = -(-\Delta)^{\frac{\alpha}{2}} g(\mathbf{v}).$$

► Therefore, we regard p.v. $\int_{\mathbb{R}^d} \left(g(\mathbf{v} + w) - g(\mathbf{v}) \right) \frac{K_f(\mathbf{v}, w)}{|w|^{d+\alpha}} dw$ as a α order term and gH_f as a zero order term in g. Hence, we neglect the term gH_f and consider a generality PDE.

▲□▶▲□▶▲□▶▲□▶ ▲□▶ ● □ ● ● ●

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000
Our model					

▶ In our work, we assume $\alpha \in (0, 2)$ and consider the following non-local PDE:

 $\begin{cases} \partial_t u(t, x, \mathbf{v}) + \mathscr{L}_{\kappa, \mathbf{v}}^{(\alpha)} u(t, x, \mathbf{v}) + \mathbf{v} \cdot \nabla_x u(t, x, \mathbf{v}) = f(t, x, \mathbf{v}), \ t \ge 0, \\ u(0, x, \mathbf{v}) = \varphi(x, \mathbf{v}), \end{cases}$ (1.3)

where

$$\mathscr{L}^{(\alpha)}_{\kappa,\mathrm{v}}u(x,\mathrm{v}):=\mathrm{p.v.}\int_{\mathbb{R}^d}\Big(u(x,\mathrm{v}+z)-u(x,\mathrm{v})\Big)\kappa(t,x,\mathrm{v},z)\nu(\mathrm{d} z),$$

with some measurable coefficient $\kappa:\mathbb{R}_+\times\mathbb{R}^{3d}\to\mathbb{R}_+$ and measure ν in the form of

$$\nu(A) := \int_0^\infty \frac{\mathrm{d}r}{r^{1+\alpha}} \int_{\mathbb{S}^{d-1}} \mathbf{1}_A(r\omega) \mu(\mathrm{d}\omega),$$

where μ is a symmetric finite measure in \mathbb{S}^{d-1} with the following non-degenerate property

$$\inf_{e\in\mathbb{S}^{d-1}}\int_{\mathbb{S}^{d-1}}|\langle e,\omega\rangle|\mu(\mathrm{d}\omega)>0.$$

Question: Existence and Uniqueness.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
Scaling					

► Let us consider the elliptic equation:

$$(-\Delta_{\mathbf{v}})^{\frac{\alpha}{2}}u + \mathbf{v} \cdot \nabla_x u = 0.$$

▶ We suppose $u_{\varepsilon}(x, \mathbf{v}) = u(\varepsilon^{\beta}x, \varepsilon \mathbf{v})$ still satisfy the equation, then we have

$$\begin{array}{l} (-\Delta_{\mathbf{v}})^{\frac{\alpha}{2}} u_{\varepsilon}(x,\mathbf{v}) = \varepsilon^{\alpha} (-\Delta_{\mathbf{v}})^{\frac{\alpha}{2}} u(\varepsilon^{\beta}x,\varepsilon\mathbf{v}) \\ \mathbf{v} \cdot \nabla_{x} u_{\varepsilon}(x,\mathbf{v}) = \varepsilon^{\beta} \mathbf{v} \cdot \nabla_{x} u(\varepsilon^{\beta}x,\varepsilon\mathbf{v}) \\ \varepsilon^{\alpha} \Big((-\Delta_{\mathbf{v}})^{\frac{\alpha}{2}} u(\varepsilon^{\beta}x,\varepsilon\mathbf{v}) + \varepsilon \mathbf{v} \cdot \nabla_{x} u(\varepsilon^{\beta}x,\varepsilon\mathbf{v}) \Big) = 0 \end{array} \right\} \Rightarrow \beta = \alpha + 1.$$

• Notice that $\nabla_x \approx \nabla_v^{\alpha+1}$ is very singular.

▶ Naturally, we introduce the following distance in \mathbb{R}^{2d} by

$$|z_1 - z_2|_a := |x_1 - x_2|^{\frac{1}{1+\alpha}} + |v_1 - v_2|$$
 where $z_i = (x_i, v_i) \in \mathbb{R}^d \times \mathbb{R}^d$.

Moreover, we introduce the anisotropic Hölder-Zygmund space

$$\mathbf{C}_a^s := \left\{ f \in \mathbb{R}^{2d} \to \mathbb{R} : \|f\|_{\mathbf{C}_a^s} := \|f\|_{\infty} + [f]_{\mathbf{C}_a^s} < \infty \right\},\$$

where

$$[f]_{\mathbf{C}_a^s} := \sup_h \|\delta_h^{|s|+1} f\|_{\infty} / |h|_a^s, \quad \delta_h f(z) := f(z+h) - f(z).$$

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
Assumption	00000000	00000	0000000	000	000
rissumption	-				

▶ We introduce the Hölder-Zygmund space in \mathbb{R}^d_x and \mathbb{R}^d_y first,

$$\mathbf{C}_x^s := \left\{ f \in \mathbb{R}^{2d} \to \mathbb{R} : \|f\|_{\mathbf{C}_a^s} := \|f\|_{\infty} + [f]_{\mathbf{C}_a^s} < \infty \right\},\$$

where

$$[f]_{\mathbf{C}_x^s} := \sup_h \|\delta_{h,x}^{[s]+1} f\|_{\infty} / |h|^s, \quad \delta_{h,x} f(x,\mathbf{v}) := f(x+h,\mathbf{v}) - f(x,\mathbf{v}).$$

The space \mathbf{C}_{v}^{s} is the same.

 $(\mathbf{H}_{\theta,\beta}^{\kappa,bdd})$ There are some $\beta \in (0, \alpha), \theta \in [\beta, \alpha(1 + \alpha))$ and $c_i > 0$ for i = 0, 1 such that for all $t \in \mathbb{R}_+$ and $x, \mathbf{v} \in \mathbb{R}^d$

$$\kappa(t, x, \mathbf{v}) \ge c_0 \quad \|\kappa(t)\|_{\mathbf{C}_x^{\frac{\theta}{1+\alpha}}} \lor \|\kappa(t)\|_{\mathbf{C}_{\mathbf{v}}^{\beta}} \leqslant c_1.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000
Known res	sults				

2012 (Alexandre)

When $\varphi \equiv 0$ and $\mathscr{L}_{\kappa,\mathrm{v}}^{(\alpha)} = \Delta_{\mathrm{v}}^{\frac{\alpha}{2}}$, there is a L^2 -regularity:

$$\|\Delta_x^{\frac{\alpha}{2(1+\alpha)}} u\|_{L^2} + \|\Delta_v^{\frac{\alpha}{2}} u\|_{L^2} \le C \|f\|_{L^2}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

▶ This estimate comes from the Fourier's transformation.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000
Known res	ults				

2012 (Alexandre)

When $\varphi \equiv 0$ and $\mathscr{L}_{\kappa,\mathrm{v}}^{(\alpha)} = \Delta_{\mathrm{v}}^{\frac{\alpha}{2}}$, there is a L^2 -regularity:

$$\|\Delta_x^{\frac{\alpha}{2(1+\alpha)}} u\|_{L^2} + \|\Delta_v^{\frac{\alpha}{2}} u\|_{L^2} \leqslant C \|f\|_{L^2}.$$

▶ This estimate comes from the Fourier's transformation.

2018 (Chen-Zhang)

Assume κ has both upper bounded and lower bounded. There is a L^p -regularity for any $p \in (1, +\infty)$:

$$\|\Delta_x^{\frac{\alpha}{2(1+\alpha)}}u\|_{L^p} + \|\Delta_v^{\frac{\alpha}{2}}u\|_{L^p} \leqslant C_p \|f\|_{L^p}.$$

▶ They get this estimate by the interpolation and a crucial lemma:

$$\int_{\mathbb{R}^d} |x|^{\beta} |\mathbf{v}|^{\gamma} |\nabla_x^n \nabla_\mathbf{v}^m p_{s,t}(x,\mathbf{v})| \mathrm{d}x \mathrm{d}\mathbf{v} \leqslant C(t-s)^{-\frac{(1+\alpha)(m-\beta)}{\alpha} - \frac{n-\gamma}{\alpha}},$$

where $p_{s,t}(x, \mathbf{v})$ is the heat kernel of the operator $\mathscr{L}_{\kappa, \mathbf{v}}^{(\alpha)}$ when κ is independent with (x, \mathbf{v}) .

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
000000000	00000000	00000	0000000	000	000

2019 (H.-Peng-Zhang)

Assume $\nu(dz) = |z|^{-d-\alpha} dz$, $\kappa \in C_b^{\infty}(\mathbb{R}^{2d})$ with lower bounded is independent with time t, and for any $i, j \in \mathbb{N}_0$ there is a $C_{i,j}$ such that for all $x, v \in \mathbb{R}^d$

$$|\nabla_x^{i+1} \nabla_{\mathbf{v}}^j \kappa(x, \mathbf{v})| \leqslant \frac{C_{i,j}}{1+|\mathbf{v}|^2}.$$

Then there is a non-negative function $p_t(x, \mathbf{v}, y, w)$ such that for any $(y, w) \in \mathbb{R}^{2d}$, $p_t(\cdot, y, w) \in C_b^{\infty}(\mathbb{R}^{2d})$ and for any $\varphi \in C_b^1$, $\int_{\mathbb{R}^{2d}} \varphi(y, w) p_t(x, \mathbf{v}, y, w) dy dw$ solves the PDE (1.3) with $f \equiv 0$.

This result comes from the Malliavin calculus.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
000000000	00000000	00000	0000000	000	000

2019 (H.-Peng-Zhang)

Assume $\nu(dz) = |z|^{-d-\alpha} dz$, $\kappa \in C_b^{\infty}(\mathbb{R}^{2d})$ with lower bounded is independent with time t, and for any $i, j \in \mathbb{N}_0$ there is a $C_{i,j}$ such that for all $x, v \in \mathbb{R}^d$

$$|\nabla_x^{i+1} \nabla_{\mathbf{v}}^j \kappa(x, \mathbf{v})| \leqslant \frac{C_{i,j}}{1+|\mathbf{v}|^2}$$

Then there is a non-negative function $p_t(x, v, y, w)$ such that for any $(y, w) \in \mathbb{R}^{2d}$, $p_t(\cdot, y, w) \in C_b^{\infty}(\mathbb{R}^{2d})$ and for any $\varphi \in C_b^1$, $\int_{\mathbb{R}^{2d}} \varphi(y, w) p_t(x, v, y, w) dy dw$ solves the PDE (1.3) with $f \equiv 0$.

- This result comes from the Malliavin calculus.
- **2019** (H.-Wu-Zhang)

Assume $\varphi \equiv 0$ and $\nu(dz) = |z|^{-d-\alpha} dz$. Under the condition ($\mathbf{H}_{\theta,\beta}^{\kappa,bdd}$), there is a Schauder estimate

$$\sup_{t\in[0,T]} \left(\left\| u(t) \right\|_{\mathbf{C}_{\mathbf{v}}^{\frac{\alpha+\theta}{1+\alpha}}} + \left\| u(t) \right\|_{\mathbf{C}_{\mathbf{v}}^{\alpha+\beta}} \right) \leqslant C \sup_{t\in[0,T]} \left(\left\| f(t) \right\|_{\mathbf{C}_{\mathbf{v}}^{\frac{\theta}{1+\alpha}}} + \left\| f(t) \right\|_{\mathbf{C}_{\mathbf{v}}^{\beta}} \right).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	000	000

Part 2: Our main results

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	000	000

Anisotropic Littlewood-Paley decomposition and Besov space

▶ Denote by B_r^a the unit ball with radio r in metric space $(\mathbb{R}^{2d}, |\cdot|_a)$, i.e.

$$B_r^a := \{ (\xi, \eta) \in \mathbb{R}^{2d} ; |(\xi, \eta)|_a < r \}.$$

Let ϕ_0^a be a C^∞ -function on \mathbb{R}^{2d} with

 $\phi_0^a(\xi,\eta) = 1$ for $(\xi,\eta) \in B_1^a$ and $\phi_0^a(\xi,\eta) = 0$ for $(\xi,\eta) \notin B_2^a$.

For $(\xi, \eta) \in \mathbb{R}^{2d}$ and $j \in \mathbb{N}$, define

 $\phi_j^a(\xi,\eta) := \phi_0^a(2^{-(1+\alpha)j}\xi, 2^{-j}\eta) - \phi_0^a(2^{-(1+\alpha)(j-1)}\xi, 2^{-(j-1)\eta}).$

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	000	000

Anisotropic Littlewood-Paley decomposition and Besov space

▶ Denote by B_r^a the unit ball with radio r in metric space $(\mathbb{R}^{2d}, |\cdot|_a)$, i.e.

$$B_r^a := \{ (\xi, \eta) \in \mathbb{R}^{2d} ; |(\xi, \eta)|_a < r \}.$$

Let ϕ_0^a be a C^∞ -function on \mathbb{R}^{2d} with

$$\phi_0^a(\xi,\eta) = 1$$
 for $(\xi,\eta) \in B_1^a$ and $\phi_0^a(\xi,\eta) = 0$ for $(\xi,\eta) \notin B_2^a$.

▶ For $(\xi, \eta) \in \mathbb{R}^{2d}$ and $j \in \mathbb{N}$, define

$$\phi_j^a(\xi,\eta) := \phi_0^a(2^{-(1+\alpha)j}\xi, 2^{-j}\eta) - \phi_0^a(2^{-(1+\alpha)(j-1)}\xi, 2^{-(j-1)\eta}).$$

	•	It is easy to see that for $j \in \mathbb{N}$, $\phi_j^a(\xi, \eta) =$
		$ \phi_1^a (2^{-(1+\alpha)(j-1)}\xi, 2^{-(j-1)\eta}) \ge 0 $ and $\operatorname{supp} \phi_j^a \subset B_{2j+1}^a \backslash B_{2j-1}^a (\text{see the picture left}), $
		$\operatorname{supp}\phi_j^a \subset B^a_{2^{j+1}} \setminus B^a_{2^{j-1}}$ (see the picture left),
		k
1.PNG		$\sum_{j=0}^{k} \phi_j^a(\xi,\eta) = \phi_0^a(2^{-(1+\alpha)k}\xi, 2^{-k}\eta) \to 1, \ k \to \infty.$
	▶	Notice that $\{\phi_j^a\}_{j\in\mathbb{N}_0}$ is a partition of unity
		of
		$ \mathbb{R}^{d} = B_{2}^{a} \cup \Big(\cup_{j \in \mathbb{N}} (B_{2j+1}^{a} \setminus B_{2j-1}^{a}) \Big). $

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	000	000

For given $j \in \mathbb{N}_0$, the block operator Δ_j^a is defined on \mathscr{S}' by

$$\begin{split} \Delta_j^a f(x,\mathbf{v}) &:= \mathscr{F}^{-1}(\phi_j^a \mathscr{F}(f))(x,\mathbf{v}) = \mathscr{F}^{-1}(\phi_j^a) * f(x,\mathbf{v}) \\ &= \int_{\mathbb{R}^{2d}} \mathscr{F}^{-1}(\phi_1^a)(y,w) f(x - 2^{-(1+\alpha)(j-1)}y,\mathbf{v} - 2^{-(j-1)}w) \mathrm{d}y \mathrm{d}w. \end{split}$$

For $j \in \mathbb{N}_0$, by definition it is easy to see that

$$\Delta_j^a = \Delta_j^a \widetilde{\Delta}_j^a, \text{ where } \widetilde{\Delta}_j^a := \Delta_{j-1}^a + \Delta_j^a + \Delta_{j+1}^a \text{ with } \Delta_{-1}^a \equiv 0, \quad (2.1)$$

and Δ_j^a is symmetric in the sense that

$$\langle \Delta_j^a f, g \rangle = \langle f, \Delta_j^a g \rangle.$$

 \blacktriangleright The cut-off low frequency operator S_k is defined by

$$S_k f := \sum_{j=0}^{k-1} \Delta_j^a f = \int_{\mathbb{R}^{2d}} \check{\phi}_0^a(y, w) f(x - 2^{-(1+\alpha)k}y, v - 2^{-k}w) \mathrm{d}y \mathrm{d}w \to f.$$
(2.2)

$$f = \sum_{j=0}^{\infty} \Delta_j^a f,$$

which is called the Littlewood-Paley decomposition.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	000	000

Definition 1 (Anistropy Besov space)

For any $s \in \mathbb{R}$ and $p \in [1, \infty]$, the anistropy Besov space $\mathbf{B}^s_{a,\infty}$ is defined by

$$\mathbf{B}_{a,\infty}^{s}(\mathbb{R}^{d}) := \bigg\{ f \in \mathscr{S}'(\mathbb{R}^{d}) : \|f\|_{\mathbf{B}_{a,\infty}^{s}} := \sup_{j \ge 0} \left(2^{sj} \|\Delta_{j}^{a}f\|_{\infty} \right) < \infty \bigg\}.$$

Proposition 2 (H. Triebel)

For any s > 0,

$$\mathbf{C}_{a}^{s}(\mathbb{R}^{2d}) = \mathbf{B}_{a,\infty}^{s}(\mathbb{R}^{2d}) = \mathbf{C}_{x}^{\frac{s}{1+\alpha}}(\mathbb{R}^{2d}) \cap \mathbf{C}_{v}^{s}(\mathbb{R}^{2d}).$$

Moreover,

$$L^{\infty}(\mathbb{R}^{2d}) \subset \mathbf{B}^{0}_{a,\infty}(\mathbb{R}^{2d}).$$

 The proof of the proposition 2 can be found in [1].
 [1] Serguei Dachkovski, Anisotropic function spaces and related semi-linear hypoelliptic equations, Math. Nachr. 248/249 (2003), 40-61.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction 000000000	Main Results ○○○●○○○○	From non-local operator to process	Our approach	Some techniques	Future works
Notation					

▶ We introduce $L_x^p L_v^q$ and $L_v^q L_x^p$ norm in the form of

$$\|f\|_{L^p_x L^q_{\mathbf{v}}} := \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x, \mathbf{v})|^p \mathrm{d}x\right)^{q/p} \mathrm{d}\mathbf{v}\right)^{1/q};$$

$$||f||_{L^q_{\mathbf{v}}L^p_x} := \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x,\mathbf{v})|^q \mathrm{d}\mathbf{v}\right)^{p/q} \mathrm{d}x\right)^{1/p},$$

where

$$\int_{\mathbb{R}^d} |f(y)|^{\infty} \mathrm{d}y^{1/\infty} := \sup_{y \in \mathbb{R}^d} |f(y)|.$$

▶ Notice that $L_x^p L_v^q \neq L_v^q L_x^p$. In fact, when $p \ge q$, we have

 $\|f\|_{L^{q}_{v}L^{p}_{x}} \leqslant \|f\|_{L^{p}_{x}L^{q}_{v}}.$

▶ Here we define a $\mathbb{L}^{p,q}$ norm:

$$||f||_{\mathbb{L}^{p,q}} := ||f||_{L^q_v L^p_x} \vee ||f||_{L^p_x L^q_v}.$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Introduction	Main Results ○○○○●○○○	From non-local operator to process	Our approach	Some techniques	Future works
Classical so	olution				

In our work, we consider the existence and the regularity of the following classical solutions.

Definition 3

Fix $\varphi \in C_b(\mathbb{R}^{2d})$ and $f \in L^{\infty}(\mathbb{R}^{2d})$. We call a continuous function $u : (0, \infty) \times \mathbb{R}^{2d} \to \mathbb{R}$ with $u \in L^{\infty}_{loc}((0, \infty); \mathbf{C}_x^{1+\varepsilon} \cap \mathbf{C}_v^{\alpha \vee 1+\varepsilon})$ a classical solution of PDE (1.3) if for all $t \ge 0$ and $x, v \in \mathbb{R}^d$,

$$u(t, x, \mathbf{v}) = \varphi(x, \mathbf{v}) + \int_0^t \left(\mathscr{L}_{\kappa, \mathbf{v}}^{(\alpha)} + \mathbf{v} \cdot \nabla_x \right) u(r, x, \mathbf{v}) + f(r, x, \mathbf{v}) \mathrm{d}r$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works		
000000000	00000000	00000	0000000	000	000		
Our occumption							

Jur assumption

 $\begin{aligned} (\mathbf{H}_{\theta,\beta}^{\kappa}) \ \text{There are some } \beta \in (0,\alpha), \theta \in [\beta,\alpha(1+\alpha)) \text{ and } c_i > 0 \text{ for } i = 0, 1, 2, 3 \text{ such } \\ \text{that for all } t \in \mathbb{R}_+, x, \mathbf{v}, y, w \in \mathbb{R}^d \text{ and } r > 0, \end{aligned}$

$$\inf_{\omega \in \mathbb{S}^{d-1}} \int_{|z| \leqslant r} (\omega \cdot z)^2 \kappa(t, x, \mathbf{v}, z) \nu(\mathrm{d}z) \ge c_0 r^{2-\alpha}, \tag{2.3}$$

$$\int_{|z|\leqslant r} |z|^2 \kappa(t, x, \mathbf{v}, z) \nu(\mathrm{d}z) \leqslant c_1 r^{2-\alpha},$$
(2.4)

$$\int_{|z|\leqslant r} |z|^2 |\kappa(t, x, \mathbf{v}, z) - \kappa(t, y, w, z)| \nu(\mathrm{d}z) \leqslant c_2 r^{2-\alpha} (|x-y|^{\frac{\theta}{1+\alpha}} + |\mathbf{v}-w|^{\beta}).$$
(2.5)

- ▶ Notice that condition $(\mathbf{H}_{\theta,\beta}^{\kappa,bdd})$ is **stronger** then condition $(\mathbf{H}_{\theta,\beta}^{\kappa})$.
- ► Notice that (2.3) is strictly weaker then the condition $\kappa \ge c_0$. For example, we let $\kappa(x, v, z) = \mathbf{1}_{V(x,v)}(z)$ where

$$V(x, \mathbf{v}) = \{ z \in \mathbb{R}^d ; \langle \frac{z}{|z|}, \xi(x, \mathbf{v}) \rangle < \delta \}$$

with some measurable function $\xi : \mathbb{R}^{2d} \to \mathbb{S}^{d-1}$ and $\delta > 0$. Then this κ satisfies condition (2.3) but does **not** have lower bounded.

Introduction 000000000	Main Results ○○○○○○●○	From non-local operator to process	Our approach	Some techniques	Future works
Main Resu	lts				

Theorem 4 (Hölder estimate)

Assume $\alpha \in (0,2)$ and $f \equiv 0$. Under the condition $\mathbf{H}_{\theta,\beta}^{\kappa}$, fix any $p,q \in [1,+\infty]$ with

$$\Theta := \frac{d(\alpha+1)}{p} + \frac{d}{q} < \beta.$$

(i) For any γ ∈ (0, α + β), there is a constant C > 0 such that for all classical solutions of PDE (1.3) u(t, x, v) and all 0 < t ≤ T,

$$\|u(t)\|_{\mathbf{C}_{\mathbf{v}}^{\gamma}} \leqslant Ct^{-\frac{\gamma+\Theta}{\alpha}} \|\phi\|_{\mathbb{L}^{p,q}}.$$

(ii) For any γ ∈ (0, α + θ), there is a constant C > 0 such that for all classical solutions of PDE (1.3) u(t, x, v) and all 0 < t ≤ T,

$$\|u(t)\|_{\mathbf{C}_x^{\frac{\gamma}{1+\alpha}}} \leqslant C t^{-\frac{\gamma+\Theta}{\alpha}} \|\phi\|_{\mathbb{L}^{p,q}}.$$

- ▶ When $1 < \alpha + \beta < \alpha + \alpha$, which is that $\alpha > \frac{1}{2}$, we obtain the gradient estimate for variable v.
- ▶ When $1 + \alpha < \alpha + \theta < \alpha + \alpha(1 + \alpha)$, which is that $\alpha > \frac{\sqrt{5}-1}{2}$, we obtain the gradient estimate for variable *x*.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	000	000
Main Resu	lts				

Theorem 5 (Existence of the fundamental solution)

Assume $\alpha \in (\frac{\sqrt{5}-1}{2}, 2)$ and $\nu(dz) = |z|^{-d-\alpha} dz$. Under the condition $(\mathbf{H}_{\theta,\beta}^{\kappa})$ with $\theta > 1$, for any $0 \leq s < t$, there is a non-negative function $p_{s,t}^{\kappa}(x, v, y, w)$ in $\mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d \times \mathbb{R}^d$ which has the following property: for $x, v \in \mathbb{R}^d$, $p_{s,t}^{\kappa}(x, v, \cdot, \cdot) \in \mathbb{L}^{p,q}$ with

$$p,q \in [1,+\infty], \quad \frac{1}{p'} + \frac{1}{p} = \frac{1}{q'} + \frac{1}{q} = 1 \quad and \quad \Theta' := \frac{d(\alpha+1)}{p'} + \frac{d}{q'} < \beta,$$

such that for any uniform continuous bounded function φ in \mathbb{R}^{2d} and continuous bounded function f,

$$\begin{split} u(t, x, \mathbf{v}) &= \int_{\mathbb{R}^{2d}} p_{0,t}^{\kappa}(x, \mathbf{v}, y, w) \varphi(y, w) \mathrm{d}y \mathrm{d}w \\ &+ \int_{0}^{t} \int_{\mathbb{R}^{2d}} p_{s,t}^{\kappa}(x, \mathbf{v}, y, w) f(s, y, w) \mathrm{d}y \mathrm{d}w \mathrm{d}s \end{split}$$

is a classical solution of PDE (1.3) with

$$\|u(t)-\varphi\|_{\mathbf{B}^0_{a,\infty}}\to 0 \quad as \quad t\to 0.$$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 >

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

Part 3: From operator to process

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
Related pr					

• We let
$$\kappa_0(t,z) : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}_+$$
 with $\kappa_0(t,z) = \kappa_0(t,-z)$ satisfying

$$\inf_{\omega \in \mathbb{S}^{d-1}} \int_{|z| \leq r} (\omega \cdot z)^2 \kappa(t, x, \mathbf{v}, z) \nu(\mathrm{d}z) \ge c_0 r^{2-\alpha},
\int_{|z| \leq r} |z|^2 \kappa(t, x, \mathbf{v}, z) \nu(\mathrm{d}z) \le c_1 r^{2-\alpha}.$$
(3.1)

From (3.1), we obtain that for any $\beta < \alpha < \gamma$,

$$\begin{split} \int_{|z|\leqslant r} |z|^{\beta} \kappa(t,x,\mathbf{v},z)\nu(\mathrm{d}z) &= \sum_{k=0}^{\infty} \int_{2^{-k-1}r < |z|\leqslant 2^{-k}r} |z|^{\beta} \kappa(t,x,\mathbf{v},z)\nu(\mathrm{d}z) \\ &\leqslant c_1 2^{2-\beta} r^{\beta-\alpha}, \\ &\int_{|z|\geqslant r} |z|^{\gamma} \kappa(t,x,\mathbf{v},z)\nu(\mathrm{d}z) \leqslant c_1 2^{2-\gamma} r^{\gamma-\alpha}. \end{split}$$

► Hence $\nu_s(dz) := \kappa_0(s, z)\nu(dz)$ is a Lévy measure.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	0000	0000000	000	000

- ► Let N(dt, dv) be the Poisson random measure on \mathbb{R}^{d+1} with intensity measure $\nu_t(dv)dt$, and $\tilde{N}(dt, dv) := N(dt, dv) \nu_t(dv)dt$ the compensated Poisson random measure.
- ▶ For $s \leq t$, define

$$L_{s,t} := \int_s^t \int_{|\mathbf{v}| \leq 1} \mathbf{v} \tilde{N}(\mathrm{d}r, \mathrm{d}\mathbf{v}) + \int_s^t \int_{|\mathbf{v}| > 1} \mathbf{v} N(\mathrm{d}r, \mathrm{d}\mathbf{v}),$$

and $K_{s,t} = (X_{s,t}, V_{s,t}) := (\int_{s}^{t} L_{s,r} dr, L_{s,t}).$

▶ Notice that if $X_{s,s} = x$ and $V_{s,s} = v$, then

$$K_{s,t}^{x,\mathbf{v}} = (x + (t-s)\mathbf{v} + \int_s^t L_{s,r} \mathrm{d}r, \mathbf{v} + L_{s,t}).$$

▶ The infinitesimal generator of $K_{s,t}^{x,v}$ is $\mathscr{L}_{0,v}^{(\alpha)} + v \cdot \nabla_x$, where

$$\mathscr{L}_{0,\mathrm{v}}^{(\alpha)}u(t,x,\mathrm{v}) := \mathrm{p.v.} \int_{\mathbb{R}^d} \Big(u(x,\mathrm{v}+z) - u(x,\mathrm{v}) \Big) \kappa_0(t,z) \nu(\mathrm{d} z),$$

which means that

$$u(t, x, \mathbf{v}) = \mathbb{E}(\int_0^t f(s, K_{s,t}^{x, \mathbf{v}}) \mathrm{d}s) + \mathbb{E}(\varphi(K_{0,t}^{x, v}))$$

is a classical solution of (1.3) when $\kappa(t, x, \mathbf{v}, z) \equiv \kappa_0(t, z)$.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

- ▶ By Itô formula, this classical solution is unique. Therefore, we obtain a presentation of the (1.3) when κ is independent with x, v.
- ▶ Next, we can get the existence and smoothness of the density of $K_{s,t}$ denoted by $p_{s,t}(x, v)$. Notice that

$$P_{s,t}g(x,\mathbf{v}) := \mathbb{E}(g(K_{s,t}^{x,\mathbf{v}})) = \int_{\mathbb{R}^{2d}} p_{s,t}(y,w)g(x+(t-s)\mathbf{v}+y,\mathbf{v}+w)\mathrm{d}y\mathrm{d}w.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

► For simplify, we define $\Gamma_{s,t}g(x, \mathbf{v}) := g(x + (t - s)\mathbf{v}, \mathbf{v})$ and then we have $P_{s,t}g = \Gamma_{s,t}p_{s,t} * g$.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
Crucial len	nma				

Lemma 6

(i) For any $\gamma \ge 0$ and $\beta_i \in [0, \alpha)$ for i = 1, 2 and $n, m \in \mathbb{N}_0$, operator \mathscr{H}_j is $\Delta_j^a \Gamma_{s,t}$ or $\Gamma_{s,t}^{-1} \Delta_j^a \Gamma_{s,t}$, there is a constant C > 0 (which is independent with κ_0 only depends on c_1) such that for any nonnegative measurable $f : \mathbb{R}_+ \to \mathbb{R}_+$, $\theta \ge \beta_2$ and all $j \in \mathbb{N}_0$,

$$\int_{0}^{t} \int_{\mathbb{R}^{d}} |\mathbf{x}|^{\beta_{1}} |\mathbf{v}|^{\beta_{2}} |\nabla_{\mathbf{v}}^{n} \nabla_{x}^{m} \mathscr{H}_{j} p_{s,t}(x,\mathbf{v})| f(s) \mathrm{d}x \mathrm{d}v \mathrm{d}s$$

$$\leqslant C 2^{[((1+\alpha)m+n)-\gamma-((1+\alpha)\beta_{1}+\beta_{2})]j} \int_{0}^{t} (t-s)^{-\gamma/\alpha} f(s) \mathrm{d}s.$$
(3.2)

(ii) For any T > 0, $p, q \in [1, +\infty]$ and $\gamma \ge 0$, there is a constant C such that for all $j \in \mathbb{N}_0$ and $0 \le s < t \le T$

$$\|\Delta_j^a \Gamma_{s,t} p_{s,t}\|_{\mathbb{L}^{p,q}} \leqslant C 2^{-\gamma j} (t-s)^{-\frac{\gamma+\Theta}{\alpha}}$$

where

$$\Theta = (1+\alpha)(1-\frac{d}{p}) + 1 - \frac{d}{q}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

The key point of proof

▶ Notice that

$$N(t, \mathrm{dv}) - N(s, \mathrm{dv}) \stackrel{(d)}{=} N(t-s, \mathrm{dv}) \stackrel{(d)}{=} (t-s)^{\frac{1}{\alpha}} N_1(1, \mathrm{dv}),$$

where the intensity measure of N_1 is $\kappa((t-s), v)\nu(dv)$. Therefore

$$V_{s,t} \stackrel{(d)}{=} (t-s)^{\frac{1}{\alpha}} \tilde{V}_{0,1}$$

where the Lévy measure of $\tilde{V}_{0,r}$ is $\kappa((t-s)r, v)\nu(dv)$. Furthermore

$$K_{s,t} \stackrel{(d)}{=} ((t-s)^{\frac{1+\alpha}{\alpha}} \tilde{X}_{0,1}, (t-s)^{\frac{1}{\alpha}} \tilde{V}_{0,1}),$$

where $\tilde{X}_{0,1} = \int_0^1 \tilde{V}_{0,r} dr$.

• We denote by $\bar{p}_{0,1}$ the density of $(\tilde{X}_{0,1}, \tilde{V}_{0,1})$, then

$$p_{s,t}(x,\mathbf{v}) = (t-s)^{-(\frac{d}{\alpha} + \frac{(1+\alpha)d}{\alpha})} \bar{p}_{0,1}((t-s)^{-\frac{1+\alpha}{\alpha}}x, (t-s)^{-\frac{1}{\alpha}}\mathbf{v}).$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

The key point of proof

Notice that

$$N(t, \mathrm{dv}) - N(s, \mathrm{dv}) \stackrel{(d)}{=} N(t-s, \mathrm{dv}) \stackrel{(d)}{=} (t-s)^{\frac{1}{\alpha}} N_1(1, \mathrm{dv}),$$

where the intensity measure of N_1 is $\kappa((t-s), v)\nu(dv)$. Therefore

$$V_{s,t} \stackrel{(d)}{=} (t-s)^{\frac{1}{\alpha}} \tilde{V}_{0,1}$$

where the Lévy measure of $\tilde{V}_{0,r}$ is $\kappa((t-s)r, v)\nu(dv)$. Furthermore

$$K_{s,t} \stackrel{(d)}{=} ((t-s)^{\frac{1+\alpha}{\alpha}} \tilde{X}_{0,1}, (t-s)^{\frac{1}{\alpha}} \tilde{V}_{0,1}),$$

where $\tilde{X}_{0,1} = \int_0^1 \tilde{V}_{0,r} dr$.

• We denote by $\bar{p}_{0,1}$ the density of $(\tilde{X}_{0,1}, \tilde{V}_{0,1})$, then

$$p_{s,t}(x,\mathbf{v}) = (t-s)^{-(\frac{d}{\alpha} + \frac{(1+\alpha)d}{\alpha})} \bar{p}_{0,1}((t-s)^{-\frac{1+\alpha}{\alpha}}x, (t-s)^{-\frac{1}{\alpha}}\mathbf{v}).$$

Condition

$$\inf_{\omega \in \mathbb{S}^{d-1}} \int_{|z| \leqslant r} (\omega \cdot z)^2 \kappa(t, x, \mathbf{v}, z) \nu(\mathrm{d}z) \ge c_0 r^{2-\alpha}, \tag{3.3}$$

guarantee that for any $n, m \in \mathbb{N}_0$ and $\beta_i \in [0, \alpha)$, there is a constant C such that

$$\int_{\mathbb{R}^{2d}} |x|^{\beta_1} |\mathbf{v}|^{\beta_2} |\nabla_x^n \nabla_\mathbf{v}^m \bar{p}_{0,1}(x,\mathbf{v})| \mathrm{d}x \mathrm{d}\mathbf{v} \leqslant C.$$

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	000000	000	000

Part 4: Our approach

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
Our appro			000000		000

Firstly, we use a technology of translate alone the characteristic line $(x_0 + tv_0, v_0)$, let $\tilde{u}(t, x, v) := u(t, x + x_0 + tv_0, v + v_0)$ and get a new equation:

$$\begin{cases} \partial_t \tilde{u}(t, x, \mathbf{v}) + \mathscr{L}_{\tilde{\kappa}, \mathbf{v}}^{(\alpha)} \tilde{u}(t, x, \mathbf{v}) + \mathbf{v} \cdot \nabla_x \tilde{u}(t, x, \mathbf{v}) = \tilde{f}(t, x, \mathbf{v}), \\ \tilde{u}(0, x, \mathbf{v}) = \tilde{\varphi}(x, \mathbf{v}), \end{cases}$$
(4.1)

where $\tilde{f}(t, x, \mathbf{v}) = f(t, x + x_0 + t\mathbf{v}_0, \mathbf{v} + \mathbf{v}_0), \tilde{\varphi}(x, \mathbf{v}) = \varphi(x + x_0, \mathbf{v} + \mathbf{v}_0)$ and $\tilde{\kappa}(x, \mathbf{v}) = \kappa(x + x_0 + t\mathbf{v}_0, \mathbf{v} + \mathbf{v}_0)$.

Then we have the following presentation

$$\begin{split} \tilde{u}(t,x,\mathbf{v}) &= \int_0^t P_{s,t} \Big(\mathscr{L}_{\tilde{\kappa}}^{(\alpha)} - \mathscr{L}_{\tilde{\kappa}_0}^{(\alpha)} \Big) \tilde{u}(s,x,\mathbf{v}) \mathrm{d}s + \int_0^t P_{s,t} \tilde{f}(s,x,\mathbf{v}) \mathrm{d}s \\ &+ P_{0,t} \tilde{\varphi}(x), \end{split}$$

where $\tilde{\kappa}_0(t) = \kappa(x_0 + tv_0, v_0)$ and $\mathscr{L}_{\kappa_0}^{(\alpha)}$ is a infinitesimal generator of some process introduced in the part 3.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	000000	000	000

▶ Next step is a highlight point. We operator the block operator Δ_j^a on both sides and only look at the point zero:

$$\begin{split} \Delta_j^a \tilde{u}(t,0,0) &= \int_0^t \Delta_j^a P_{s,t} \left(\mathscr{L}_{\tilde{\kappa}}^\alpha - \mathscr{L}_{\tilde{\kappa}_0}^{(\alpha)} \right) \tilde{u}(s,0,0) \mathrm{d}s + \int_0^t \Delta_j^a P_{s,t} \tilde{f}(s,0,0) \mathrm{d}s \\ &+ \Delta_j^a P_{0,t} \tilde{\varphi}(0,0). \end{split}$$

Notice that Δ^a_ju(t, x₀ + tv₀, v₀) = Δ^a_jũ(t, 0, 0). We take the supremum of the initial point (x₀, v₀) and get the estimate of ||Δ^a_ju(t)||_∞. Then by taking sipremum of j, we have for some ϑ > −1 and any γ ∈ [0, α):

$$\|u(t)\|_{B^{\gamma}_{a,\infty}} \lesssim \int_0^t (t-s)^{\vartheta} \|u(s)\|_{B^{\gamma}_{a,\infty}} \mathrm{d}s + t^{-\frac{1}{\alpha}(\gamma+\Theta)} \|\phi\|_{\mathbb{L}^{p,q}}.$$

▶ Notice that a highlight point here is that we turn the convolution $P_{s,t}f$ into an inner product $\langle p_{s,t}, f \rangle$. Therefore, we use our crucial lemma and get the regularity of the space.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works		
0000000000	00000000	00000	0000000	000	000		
Volterra-type Gronwall inequality							

Lemma 7 (Volterra-type Gronwall inequality)

Assume A > 0. For any $\theta, \vartheta > -1$ and T > 0, there exists a constant $C = C(A, \theta, \vartheta, T) \ge 0$ such that if locally integrable functions $f : \mathbb{R}_+ \to \mathbb{R}_+$ satisfy

$$f(t) \leq A \int_0^t (t-s)^\theta f(s) \mathrm{d}s + At^\vartheta, \quad t \in (0,T],$$

then

$$f(t) \leqslant Ct^{\vartheta}, \quad t \in (0,T].$$

- When γ + Θ < α, t^{-1/α (γ+Θ)} is a local integral function on [0, T]. We obtain main result for γ ∈ [0, α) and Θ < α − γ.</p>
- ► To lift the limitation of γ from $[0, \alpha)$ to $[0, \alpha + \beta)$, we use a lift lemma by the flow property.
- ▶ The proof can be found in [1].

[1] X. Zhang, Stochastic Volterra equations in Banach spaces and stochastic partial differential equation. *J.Funct. Anal.*, 258 (2010), 1361-1425.

▲□▶▲□▶▲□▶▲□▶ □ のQで

I ift lamma					
000000000	00000000	00000	0000000	000	000
Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works

Lift lemma

Lemma 8

Assume $\alpha \in (0,2)$ and $f \equiv 0$. Under condition $(\mathbf{H}_{\beta,\beta}^{\kappa})$, for any

$$\gamma \in (\alpha, \alpha + \beta), \quad \delta \in [0, \alpha),$$

there is a constant C_T such that for all $\varphi \in C_0^{\infty}(\mathbb{R}^d)$, all classical solutions of (1.3) and all $t \in (0,T]$,

$$\|u(t)\|_{B^{\gamma}_{a,\infty}} \leqslant C_T t^{-\frac{\delta}{\alpha}} \|\varphi\|_{B^{\gamma-\delta}_{a,\infty}}.$$
(4.2)

Lemma 9

Assume $\alpha \in (0, 2)$. Under the condition $(\mathbf{H}_{\theta,\beta}^{\kappa})$, for any $\gamma \in (\alpha - \beta, \alpha)$ and $\eta \in (0, \theta)$, there is a constant C > 0 such that for all $0 < t \leq T$,

$$\|u(t)\|_{\mathbf{C}^{\frac{\eta}{1+\alpha}}_{x}(\mathbf{C}^{\gamma}_{a})} \leqslant Ct^{-\frac{\gamma}{\alpha}} \|\phi\|_{\mathbf{C}^{\frac{\eta}{1+\alpha}}_{x}}.$$

► Notice that $u_s(t, x, v) := u(t + s, x, v)$ is the classical solution of (1.3) when $\varphi = u(s)$. Then by the uniqueness of the classical solution, we have

$$\|u(t)\|_{\mathbf{B}^{\gamma}_{a,\infty}} \lesssim t^{\frac{\delta}{\alpha}} \|u(\frac{t}{2})\|_{\mathbf{B}^{\gamma-\delta}_{a,\infty}, \, \mathsf{cond}} \to \mathsf{cond}}$$

Introduction	Main Results	From non-local operator to process	Our approach ○○○○○●○	Some techniques	Future works
Existence					

- ▶ For the existence of the classical solution, we use the probability representation.
- Firstly, we let κ_ε := (κ + ε) ∧ ¹/_ε and κ_ε has both lower bounded and upper bounded. We make a modifier of it and assume κ_ε ∈ C[∞]_b.
- When $\nu(dz) = |z|^{-d-\alpha} dz$, there is an interesting transform lemma:

Lemma 10 (H.-Peng-Zhang 2019)

Given $d \in \mathbb{N}$ and $c_0 > 1$, let $\kappa(x, z) : \mathbb{R}^d \times \mathbb{R}^d \to [c_0^{-1}, c_0]$ be a smooth function with bounded derivatives. For any $\alpha \in (0, 2)$, there is a measurable map $\sigma(x, z) : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}^d$ such that for any nonnegative measurable function f,

$$\int_{\mathbb{R}^d} f \circ \sigma(x,z) \frac{\mathrm{d}z}{|z|^{d+\alpha}} = \int_{\mathbb{R}^d} f(z) \kappa(x,z) \frac{\mathrm{d}z}{|z|^{d+\alpha}}.$$

Moreover, σ enjoys the following properties:

- $\blacktriangleright \ \sigma(x,0) = 0 \text{ and if } \kappa(x,-z) = \kappa(x,z), \text{ then } \sigma(x,-z) = -\sigma(x,z).$
- For all $i, j \in \mathbb{N}_0$, there is a $C_{ij} > 0$ such that for all $x \in \mathbb{R}^d$ and $z \in \mathbb{R}^d$,

$$|\nabla_x^i \nabla_z^j \sigma(x, z)| \leqslant C_{ij} |z|^{1-j},$$

where C_{ij} is a polynomial of $\|\nabla^m_x \nabla^n_z \kappa\|_{\infty}$, $m = 1, \dots, i, n = 0, \dots, j$.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
000000000	00000000	00000	000000	000	000

▶ When $\kappa_{\varepsilon} \in C_b^{\infty}$, we find a σ_{ε} satisfy the condition in transform lemma. Let $(X_{s,t}, V_{s,t})$ be the solution of following SDE

$$\begin{cases} \mathrm{d} X_{s,t}^{\varepsilon} = V_{s,t} \mathrm{d} L_{t}, \\ \mathrm{d} V_{s,t}^{\varepsilon} = \int_{\mathbb{R}^{d}} \sigma_{\varepsilon}(X_{s,t-}^{\varepsilon}, V_{s,t-}^{\varepsilon}, z) N(\mathrm{d} z, \mathrm{d} t), \end{cases}$$

where L_t is a standard α -stable process and $N(t, A) := \sum_{s \leq t} \mathbf{1}_{\Delta L_s \in A}$. Notice that this time

$$\boldsymbol{u}^{\varepsilon}(t,\boldsymbol{x},\mathbf{v}):=\mathbb{E}(\int_{0}^{t}f(\boldsymbol{s},\boldsymbol{K}_{\boldsymbol{s},t}^{\varepsilon}(\boldsymbol{x},\mathbf{v}))\mathrm{d}\boldsymbol{s})+\mathbb{E}(\varphi(\boldsymbol{K}_{\boldsymbol{s},t}^{\varepsilon}(\boldsymbol{x},\mathbf{v})))$$

where $K_{s,t}^{\varepsilon}(x, \mathbf{v}) := (X_{s,t}^{\varepsilon} + x + (t - s)\mathbf{v}, V_{s,t}^{\varepsilon} + \mathbf{v})$, is a classical solution of (1.3) when φ and f is smooth.

Finally, by Hölder estimate (Theorem 4), we obtain that $u^{\varepsilon} \rightarrow u$ which is a classical solution of (1.3).

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	●00	000

Part 5: Some techniques

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

- ▶ In our work, $\Delta_j^a \Gamma_{s,t} \neq \Gamma_{s,t} \Delta_j^a$. This is very bad.
- Fortunately, we have the following observation

Lemma 11

For $t \ge 0$ *and* $j \in \mathbb{N}_0$ *, define*

$$\Theta_j^t := \left\{ \ell \in \mathbb{N}_0 : 2^\ell \leqslant 2^4 (2^j + t2^{(1+\alpha)j}), \ 2^j \leqslant 2^4 (2^\ell + t2^{(1+\alpha)\ell}) \right\}.$$

(i) Let $0 \leq s < t$ and $j \in \mathbb{N}$. For any $\ell \notin \Theta_j^{t-s}$, it holds that

$$\langle \Delta_j^a f, \Gamma_{s,t} \Delta_\ell^a g \rangle = \int_{\mathbb{R}^{2d}} \Delta_j^a f(x, \mathbf{v}) \cdot \Gamma_{s,t} \Delta_\ell^a g(x, \mathbf{v}) \mathrm{d}x \mathrm{d}\mathbf{v} = 0.$$
(5.1)

(ii) For any $\beta > 0$, there is a constant $C = C(c_1, \beta) > 0$ such that for all $j \in \mathbb{N}$ and $t \ge 0$,

$$\sum_{\ell \in \Theta_j^t} 2^{-\beta\ell} \leqslant C \left(2^{-j} + t 2^{(\alpha-1)j} \right)^{\beta}, \quad \sum_{\ell \in \Theta_j^t} 2^{\beta\ell} \leqslant C \left(2^j + t 2^{(1+\alpha)j} \right)^{\beta}.$$
(5.2)

This lemma tell us that

$$\Delta_j^a \Gamma_{s,t} = \sum_{\ell=0}^{\infty} \Delta_j^a \Gamma_{s,t} \Delta_\ell^a \approx \Delta_j^a \Gamma_{s,t} \Delta_j^a.$$

The proof can be found in [1].
[1] Z. Hao, M. Wu, and X. Zhang, Schauder's estimate for nonlocal kinetic equations and its applications. Available at arXiv:1903.09967.

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

▶ There is a useful commutator estimate.

Lemma 12

Assume $\alpha \in (0,2)$ and condition $(\mathbf{H}_{\beta}^{\kappa})$ with $\beta \in (0, \alpha \wedge 1)$. Define

$$f_z(x, \mathbf{v}) = f(x, v + z) - f(x, v) - z^{\alpha} \nabla_v f(x, v)$$

where $z^{\alpha} := z \mathbf{1}_{\alpha > 1} + z \mathbf{1}_{|z| < 1} \mathbf{1}_{\alpha = 1}$.

(i) For any $\varepsilon > 0$, there is a constant C such that for all $f \in C_b^{\infty}$, $j \in \mathbb{N}_0$ and $x, v \in \mathbb{R}^d$

$$\int_{|z|\leqslant 1} |[\Delta_j^a,\kappa]f_z(x,\mathbf{v})|\nu(\mathrm{d}z)\leqslant 2^{-j\beta}C||f||_{C_{\mathbf{v}}^{\alpha+\varepsilon}}.$$
(5.3)

(ii) For any $\eta \in (-\beta, 0]$ and $\varepsilon > 0$, there is a constant C such that for all $f \in C_b^{\infty}$, $j \in \mathbb{N}$ and $x, v \in \mathbb{R}^d$

$$\int_{|z| \leq 1} |[\Delta_j^a, \kappa] f_z(x, \mathbf{v})| \nu(\mathrm{d}z) \leq 2^{-j(\beta+\eta)} C ||f||_{C_{\mathbf{v}}^{\alpha+\varepsilon+\eta}}$$

▶ The key to the proof of this lemma is the Bony decomposition.

$$fg = \sum_{i,j=0}^{\infty} \Delta_i f \Delta_j g = \sum_{i>j+1} \Delta_i f \Delta_j g + \sum_{j>i+1} \Delta_i f \Delta_j g + \sum_{(i-j)\leqslant 1} \Delta_i f \Delta_j g$$
$$:= f > g + f < g + f \circ g.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 ○のへ⊙

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	0000000	00000	0000000	000	000

Part 6: Future works

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works ○●○
Future wor	rks				

▶ We prove the existence of the fundamental solution of the non-local kinetic equation (1.3). Furthermore, we show that this is a L^{p,q} solution. However this result does not imply that it is continuous and satisfies

$$\partial_t p_{s,t}^{\kappa} + \mathscr{L}_{\kappa,\mathbf{v}}^{(\alpha)} p_{s,t}^{\kappa} + \mathbf{v} \cdot \nabla_x p_{s,t}^{\kappa} = 0.$$

- We can not deal with the existence when \u03c0(dz) \u2294 |z|^{-d-\u03c0}dz. The reason is there is not a transform lemma when L\u03e6vy measure is singular. We try to use some continuity methods and vanishing viscosity approach, but they are not work.
- Actually, the density f in Boltzmann equation is a distribution. It may not have some high regularity. However, in our model, we consider the classical solution with C^{1∨α+ε}_x ∩ C^{α+ε}_v regularity. We want to built a mild or weak solution theorem in the next step.

- コン・4回シュービン・4回シューレー

Introduction	Main Results	From non-local operator to process	Our approach	Some techniques	Future works
0000000000	00000000	00000	0000000	000	000

Thanks for your attention!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ のへぐ