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Probability representation of the NS equation

▶ Consider the following Navier-Stokes equation on Rd with d = 2, 3:{
∂tu = ∆u + u · ∇u +∇p,

divu = 0, u0 = φ,
(1)

▶ (Constantin-Iyer 2008, CPAM)Xx
t = x +

∫ t

0
u(s,Xx

s )ds +
√

2Wt, t ≥ 0,

u(t, x) = PE[∇t
xY

x
t · φ(Yx

t )],

(2)

where Yx
t is the inverse of the flow mapping x → Xx

t , ∇t denotes the transpose
of the Jacobi matrix (∇X)ij := ∂xj X

i, and P := I − ∇∆−1div is the Leray
projection.
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Probability representation of the NS equation

▶ Question:

u(t, x) = PE[∇t
xY

x
t · φ(Yx

t )]
??
= BX(t, x)

▶ Velocity & Vorticity:

w = curlu =

{
∂2u1 − ∂1u2, d = 2;
∇× u, d = 3;

and
u = Kd ∗ w, d = 2, 3,

with

K2(x) :=
(x2,−x1)

2π|x|2 , K3(x)h =
x × h
4π|x|3 . (3)
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Probability representation of the NS equation

▶ (Zhang 2016, AoAP)

w(t, x) =

{
E ((curlφ)(Yx

t ) det(∇Yx
t )) , d = 2,

E (∇t
xY

x
t · (curlφ)(Yx

t )) , d = 3.

and

u(t, x) =


E
(∫

R2
K2(x − Xy

t ) · (curlφ)(y)dy
)
, d = 2,

E
(∫

R3
K3(x − Xy

t ) · ∇Xy
t · (curlφ)(y)dy

)
, d = 3.
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Flow-distributional dependent SDEs

▶ d = 2, we define

B(x, µ�) :=

∫
R2
(K2 ∗ µy)(x)curlφ(y)dy.

Then Xx
t solves the following closed SDE:

Xx
t = x +

∫ t

0
B(Xx

s , µ
�
s)ds +

√
2Wt. (4)

▶ When curlφ ∈ P(R2), flow-distributional dependent SDE (FDSDE) (4) can
induce the following distributional dependent SDE (DDSDE):

Xt = X0 +

∫ t

0
(K2 ∗ µs)(Xs)ds +

√
2Wt, X0

(d)
= curlφ(y)dy, (5)

by letting

P ◦ (X·)
−1 :=

∫
R2

P ◦ (Xy
· )

−1curlφ(y)dy.
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Flow-distributional dependent SDEs

▶ The FDSDE (4) was introduced by [Chorin 1973, JFM] as the random vortex
method to simulate viscous incompressible fluid flows for smooth kernels.

▶ [Beale-Majda 1981, MoC], [Marchioror-Pulvirenti 1982, CMP], [Goodman 1987,
CPAM], [Long 1988, JAMS].

▶ Propagation of chaos for interaction particle system: [Jabin-Wang 2018, Invent],
[Feng-Wang 2023], [Wang 2024]; [Wang-Zhao-Zhu 2024, ARMA]......

▶ Moderately interacting particle systems: [Flandoli-Olivera-Simon 2020, SIAM
J. MATH. ANAL], [Olivera-Richard-Tomašević 2021]......

▶ Well-posedness of DDSDE (5): [Zhang 2023, CMS], [Chaudru de Raynal-Jabir-
Menozzi, 2023], [Barbu-Röckner-Zhang, 2023], [H.-Röckner-Zhang 2024, AoP]......

▶ (Question:) Well-posedness of FDSDE (4)?
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Flow-distributional dependent SDEs
▶ When d = 3, we introduce a matrix-valued process Ux

t := ∇Xx
t . Then U solves

the following linear ODE:

Ux
t = I3×3 +

∫ t

0
Ē
(∫

R3
∇K3(Xy

s − X̄y
s ) · Ūy

s · (curlφ)(y)dy
)

ds,

where Ū is an independent copy.

▶ Let (µx)x∈R3 be a family of probability measures over R3 × M3, where M3

stands for the space of all 3 × 3-matrices. Now let us introduce

B(x, µ) :=
∫
R3

∫
R3×M3

K3(x − z) · Mµy(dz × dM) · (curlφ)(y)dy.

▶ Then we obtain the following closed FDSDE
Xx

t = x +
∫ t

0
B(Xx

r , µ
�
r)dr +

√
2Wt,

Ux
t = I3×3 +

∫ t

0
∇B(·, µ�

r)(X
x
r )U

x
r dr,

where µx
t := P ◦ (Xx

t ,Ux
t )

−1 ∈ P(R3 ×M3) for x ∈ R3.
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Probability representation of the NSE-backward form

▶ On the other hand, setting ũ(t, x) := u(T − t, x) and p̃(t, x) := p(T − t, x), then
ũ solves the following backward Navier-Stokes equation:{

∂tũ +∆ũ + ũ · ∇ũ +∇p̃ = 0,
divũ = 0, ũT = φ.

▶ (Zhang 2010, PTRF)X̃x
s,t = x +

∫ t

s
ũ(r, X̃x

s,r)dr +
√

2(Wt − Ws), (s, t) ∈ DT ,

ũ(t, x) = PE[∇tX̃x
t,T · φ(X̃x

t,T)].

(6)
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Backward flow-distributional dependent SDEs

▶ Similarly, (6) can be transformed into the following backward FDSDE:

X̃x
s,t = x +

∫ t

s
B̃(X̃x

s,r, µ̃
�
r,T)dr +

√
2(Wt − Ws), (7)

where µx
s,t is the law of Xx

s,t, and

B̃(x, µ�) = K2 ∗
(∫

R2
curlφ(y)µ�(dy)

)
(x).

▶ Recall the previous drift B in forward FDSDE (4):

B(x, µ�) :=

∫
R2
(K2 ∗ µy)(x)curlφ(y)dy.
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Forward & backward FDSDEs

(i) Forward FDSDE:

Xx
t = x +

∫ t

0
B(r,Xx

r , µ
�
r)dr +

∫ t

0
Σ(r,Xx

r , µ
�
r)dWr, t ∈ [0, T]. (8)

(ii) Backward FDSDE:

X̃x
s,t = x +

∫ t

s
B̃(r, X̃x

s,r, µ̃
�
r,T)dr +

∫ t

s
Σ(r, X̃x

s,r, µ̃
�
r,T)dWr, (s, t) ∈ DT . (9)
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▷ (Stroock-Varadhan): Weak solution ⇐⇒ Martingale solution;

▷ (Barlow): Uniqueness in law ⇏ Existence of strong solution.

▷ (Shaposhnikov-Wresch, Anzeletti): Many counterexamples.
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▷ Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochas-
tic differential equations. J. Math. Kyoto Univ.

▷ Engelbert, H. J. (1991). On the theorem of T. Yamada and S. Watanabe. Stochas-
tics Stochastics Rep.

▷ Stroock, D. W. and Varadhan, S. S. R. Multidimensional diffusion processes,
volume 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental
Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1979.

▷ Barlow, M. T. (1982). One-dimensional stochastic differential equations with
no strong solution. J. London Math. Soc.

▷ Shaposhnikov, A. and Wresch, L. (2022). Pathwise vs. path-by-path unique-
ness. Ann. Inst. Henri Poincaré Probab. Stat.

▷ Anzeletti, L. (2022). Comparison of classical and path-by-path solutions to
SDEs. arXiv:2204.07866.
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SDEs and PDEs

■ Consider the following SDE:

Xs,t(x) = x +
∫ t

s b(r,Xs,r(x))dr +
√

2(Wt − Ws);

■ Forward Fokker-Planck equation (FPE):

∂tµs,t = ∆µs,t − div(b(t)µs,t), µs,s = δx;

■ Backward Fokker-Planck-Kolmogorov equation (BKE):

∂sus,t +∆us,t + b(s) · ∇us,t + f = 0, ut,t = φ.
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SDEs and PDEs

us,t(x) = Eφ(Xs,t(x)) + E
∫ t

s f (r,Xs,r)dr

Xs,t(x)

Itô’s formula to r → ϕ(Xs,r(x)) for any ϕ ∈ C2
b

��

Itô’s formula to r → ur,t(Xs,r(x))

OO

P ◦ (Xs,t(x))−1 satisfies (FPE)
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What if b is not a function?
▶ Brox diffusion (white noise); b = ∇U with some Hölder potential; Other

noises.

▶ (Weak solution):
▷

Ab
t := lim

n→∞

∫ t

0
bn(s,Xs)ds exists

and Xt = X0 + Ab
t + Wt.

▶ (Martingale solution):
▷ For any f ∈ Cb(R+ × Rd), consider the related PDE

∂tu +∆u + b · ∇u + f = 0, u(T) = 0.

We call P ∈ P(CT) a martingale solution if

u(t, ωt)− u(t, ω0)−
∫ t

0
f (r, ωr)dr is a P-martingale.

▷ N. Ethier and G. Kurtz. Markov Processes: Characterization and Convergence. Wiley series in probability and

mathematical statistic. Wiley, 1986.
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Scale analysis
▶ Let Ḣα

p be the homogenous Bessel potential space, where α ≤ 0 and p ∈ [1,∞]
and suppose for some q ∈ [1,∞]

b ∈ Lq(R+; Ḣα
p ),

and SDE (??) admits a solution denoted by X. For λ > 0, we define

Xλ
t := λ−1Xλ2t, Wλ

t := λ−1Wλ2t, bλ(t, x) := λb(λ2t, λx).

▶ Then we have

dXλ
t = bλ(t,Xλ

t )dt +
√

2dWλ
t ,

where

∥bλ∥Lq(R+;Ḣα
p ) = λ

1+α− d
p −

2
q ∥b∥Lq(R+;Ḣα

p ).

▶ As λ → 0,

Subcritical: d
p + 2

q < 1 + α; Critical: d
p + 2

q = 1 + α;

Supercritical: d
p + 2

q > 1 + α.
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A well-defined restriction on α

▶ Consider the related PDE:

∂tu = ∆u + b · ∇u + f .

▶ Assume b ∈ Cα with the differentiability index α < 0.

▶ According to the Schauder theory of the heat equation, u ∈ C2+α.

▶ To make the product b · ∇u meaningful, we need to stipulate that
1 + 2α > 0, which implies α > − 1

2 .
▷ (Delarue-Diel 2016) rough path & (Cannizzaro-Chouk 2018) para-

controlled calculus: b ∈ C−2/3+ is some Gaussian noise.
▷ (Question) Arbitrary function b? α → −1?
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Well-known results

SEU: Strong existence-uniqueness; WEU: Weak existence-uniqueness;
WE: Weak existence; EUP: Existence-uniqueness of path-by-path solution.

Value of α Subcritical Critical Supercritical

α = 0
SEU: V79

[1], KR05
[2], Z05,10

[3,4]
EUP: D07

[5], ALL23
[6]

WEU&SEU: BFGM19
[7], K21

[8],

RZ21
[9], KM23

[10]
WE: ZZ21

[11]

α ∈ [− 1
2 , 0) WEU: BC01

[12], FIR17
[13], ZZ17

[14] – –

α ∈ [−1,− 1
2 ) – – –

[1] A. J. Veretennikov. Theory Probab. Appl. 24. [2] N.V. Krylov and M. Röckner. Probab. Theory Related Fields 131.
[3] X. Zhang. Stochastic Process. Appl. 115/11. [4] X. Zhang. Electron. J. Probab. 16.
[5] A. M. Davie. Int. Math. Res. Not. IMRN 24. [6] L. Anzeletti, K. Lê and C. Ling. arXiv:2304.06802.
[7] L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli. Electron. J. Probab. 24.
[8] N. V. Krylov. Ann. Probab. 49. [9] M. Röckner and G. Zhao. Bernoulli 29 and arXiv:2103.05803.
[10] D. Kinzebulatov and K. R. Madou. arXiv:2306.04825. [11] X. Zhang and G. Zhao. Commun. Math. Phys. 381.
[12] R. F. Bass R.F. and Z. Q. Chen. Probability Theory and Related Fields. 121.

[13] F. Flandoli, E. Issoglio and F. Russo. Trans. Am. Math. Soc. 369. [14] X. Zhang and G. Zhao. arXiv:1710.10537.
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Zvonkin’s transformation- a method to kill the drift

▶ Consider the following BKE:

∂tΦ+∆Φ+ b · ∇Φ = 0, Φ(T, x) = x,

where Φ : R+ × Rd → Rd. We assume that if we can use Itô’s
formula to s → Φ(s,Xs) and then

dΦ(t,Xt) =
√

2∇Φ(t,Xt)dWt.

▶ We assume that Φ(t, ·) is an C1-diffeomorphism.

▶ We define (Yt)t≥0 := (Φ(t,Xt))t≥0 and note that (Yt)t≥0 satisfies
the SDE without drift.
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Weak well-posedness of subcritical SDEs

with α ∈ (−1,−1
2)
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Main results
(Hsub) Let (α, p, q) ∈ (−1,− 1

2 ]× [2,∞)2 with d
p + 2

q < 1 + α. Suppose that

κb
1 := ∥b∥Lq

T Bα
p,q

< ∞ and κb
2 := ∥divb∥Lq

T B−2−α
p,q/(q−1)

< ∞.

Theorem 1 (H.-Zhang 2023)

Under the condition (Hsub), there is unique weak solution to SDE
(??). Moreover, t → Ab

t has finite p-variation with some p < 2.

▶ Suppose that b ∈ Lq
T B−1/2

p,1 with d
p + 2

q < 1
2 . Then (Hsub) holds for α = − 1

2 .
Moreover, when divb = 0, (Hsub) holds.

▶ For any Lipschitz function g : Rd → R,∫ t

0
g(Xs)dAb

s is a Young integral.
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Example:Gaussian noises

▶ For given γ ∈ (d − 2, d), we define the Gaussian noise b by the
following covariance

Eb(f )b(g) =
∫
Rd

f̂ (ξ)ĝ(−ξ)|ξ|−γ
(
Id×d −

ξ ⊗ ξ

|ξ|2
)

dξ.

▶ Then we have for almost surely ω

b(ω, ·) ∈ ∩p∈[1,∞)B−1+
p,loc (R

d) divb(ω) = 0.
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Sketch of the proof
▶ Consider the following BKE:

∂tu +∆u+b · ∇u + f = 0, u(T) = 0, t ∈ [0, T].

b ∈ Cα, u ∈ C2+α.

▶ We define b · ∇u := b ⊙∇u + divb ◦ u + divb ≺ u where

b ⊙∇u := div(b ≺ u + b ◦ u) + b ≻ ∇u.

▶ The paraproduct implies that

∥divb ◦ u + divb ≺ u∥α ≲ ∥divb∥−2−α∥u∥2+α

and

∥b ⊙∇u∥α ≲ ∥b ≺ u + b ◦ u∥1+α + ∥b∥α∥∇u∥L∞

≲ ∥b∥α(∥u∥1 + ∥∇u∥L∞
T
) ≲ ∥b∥α∥u∥2+α.

▶ Therefore, we have u ∈ C2+α and

lim
δ→0

sup
|t−s|≤δ,t,s∈[0,T]

∥∇u(t)−∇u(s)∥L∞ = 0.

▶ Zvonkin’s transformation: taking f = b and Φt(x) := x + u(t, x).
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Weak solutions to supercritical SDEs
with α = −1
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The setting

▶ (Hsup) We assume d ≥ 2, b ∈ Lq
TH−1

p with p, q ∈ [2,∞],

d
p
+

2
q
< 1, divb = 0.

▶ Let bn ∈ C∞
b (R+ × Rd) with limn→∞ ∥bn − b∥Lq

T H−1
p

= 0 and
consider the following approximating SDE

Xn
t = X0 +

∫ t

0
bn(s,Xn

s )ds +
√

2Wt.

▶ We denote the distribution of (Xn
t )t∈[0,T] by Pn ∈ P(C([0,T];Rd)).
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Main results
Theorem 2 (H.-Zhang 2023)

i) For any F0 measurable random variable X0, {Pn}∞n=1 is tight in P(C([0, T];Rd)).

ii) Moreover, if the distribution of X0 has an L2 density w.r.t. the Lebesgue measure,
then there is a continuous process (Xt)t∈[0,T] such that

Xt = X0 + lim
n→∞

∫ t

0
bn(r,Xr)dr +

√
2Wt,

where the limit here is taken in L2(Ω).

iii) Let P be the law of the solution (Xt)t∈[0,T]. The following Markov property holds:

EP[f (ωt)|Bs] = EP[f (ωt)|ωs], 0 ≤ s ≤ t ≤ T, f ∈ Cb(Rd).

▶ When b ∈ L2([0, T]×Rd) or b ∈ L∞
T B−1

∞,2 (critical & ill-defined), there is only
one accumulation point of {Pn}∞n=1. That is for any bn → b, Pn converges to the
distribution of (Xt)t∈[0,T].
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Example: Particle system with singular kernels

▶ Consider the following singular interaction particle system in RNd:

dXN,i
t =

∑
j̸=i

γjK(XN,i
t − XN,j

t )dt +
√

2dWN,i
t , i = 1, · · · ,N, (10)

where K ∈ H−1
∞ (Rd;Rd) is divergence free, WN,i

t , i = 1, · · · ,N are N-independent
standard d-dimensional Brownian motions, γj ∈ R and initial value has an L2-
density.

▶ (Jabin-Wang 2018) Existence of the related FPE and propagation of chaos. (The
existence of a solution to the SDE (10) appears to be open).

▶ As a result, we have the weak existence to the N-particle system SDE (10).
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Example: GFF and super-diffusive
▶ Let d = 2, ε ∈ (0, 1] and bε be a Gaussian field with

Ebε(f )bε(g) =
∫
|ξ|≤1/ε

f̂ (ξ)ĝ(−ξ)
(
Id×d −

ξ ⊗ ξ

|ξ|2
)

dξ.

▶ When ε → 0, b := limε bε formally satisfies

b := ∇⊥ξ := (−∂x2ξ1, ∂x1ξ2) ∈ C−1− divb = 0,

where ξ = ξ(x) is the two-dimensional Gaussian Free Field (GFF)
▶ (Super-diffusive)

When ε = 1, E|Xt|2 ≍ t
√
ln t

(Cannizzaro-HaunschmidSibitz-Toninelli 2022)
(Chatzigeorgiou-Morfe-Otto-Wang 2022).

▶ For any p ∈ (2,∞)

sup
ε<1/2

∥ bε√
ln ε

∥H−1
p,loc

< ∞, a.s.

By our results, one sees that the solutions {Xε
t }[0,T] to the following approxima-

tion SDEs is tight

dXε
t =

bε(Xε
t )√

ln ε
dt +

√
2dWt.
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Sketch of the proof– Tightness
▶ Consider the following backward PDE

∂tu +∆u + b · ∇u + f = 0, u(T) = 0 (PDE)

and the following approximation PDEs

∂tun +∆un + bn · ∇un + f = 0, u(T) = 0 (APDE)

▶ Under the condition (Hsup), by De Giorgi’s method in (Zhang-Zhao 2021), we
have

sup
n

(∥un∥∞ + ∥∇un∥2) < ∞,

which implies the there is a weak solution u to (PDE).

▶ (Problem): Since we don’t know whether ⟨u, b · ∇u⟩ = 0 holds a priority, we
don’t have the uniqueness of (PDE).

▶ By Itô’s formula,

sup
n

∣∣∣E ∫ T

0
f (r,Xn

r )dr
∣∣∣ ≤ ∥un∥∞ ≲ ∥f∥Lq

T H−1
p

(1st Krylov estimate).
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Sketch of the proof– Tightness
▶ By Aldous’ criterion of tightness and the strong Markov property, we only need

to show
lim
δ→0

sup
x0∈Rd

sup
τ⩽δ

sup
n

E|Xn
τ (x0)− x0| = 0.

▶ Fix ε ∈ (0, 1). Define

hε(x) :=
√

ε2 + |x − x0|2, |∇hε| ⩽ C, |∇2hε| ⩽ Cε−1.

▶ By Itô’s formula, we have

E|Xn
τ − x0| ⩽ Ehε(Xn

τ ) = ε+ E
(∫ τ

0
(∆ + bn(s) · ∇)hε(Xn

s )ds
)

≲ ε+ δε−1 +

∣∣∣∣E(∫ τ

0
(bn · ∇hε)(s,Xn

s )ds
)∣∣∣∣

1stKE
≲ ε+ δε−1 + ∥bn · ∇hε∥Lq

δ
H−1

p
(≲ ∥bn∥Lq

δ
H−1

p
∥∇hε∥C1

b
)

≲ ε+ δε−1 + ∥b∥Lq
δ

H−1
p

→ 0

as δ → 0 and ε → 0.
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Sketch of the proof– Weak existence
▶ Tightness + Skorokhod’s representation theorem ⇒ limit process (Xt)t∈[0,T].
▶ What we need : limn→∞ supm≥n E|

∫ t
0(bn − bm)(s,Xs)ds| = 0.

▶ The second Krylov type estimate:

sup
n

In(f ) := sup
n

E
∣∣∣∣∫ t

0
f (s,Xn

s )ds
∣∣∣∣2

≲ ∥f∥2
Lq

T H−1
p
.

▷ Recall the following approximation BKE

∂sun +∆un + bn · ∇un + f = 0, u(t) = 0

and consider the following FPE

∂sρn = ∆ρn − div(bnρn).

▷ By the representation of the solution to BKE,

In(f ) = 2E
∫ t

0

∫ t

s
f (s,Xn

s )f (r,Xn
r )drds

= 2E
∫ t

0
f (s,Xn

s )EFs

[∫ t

s
f (r,Xn

r )dr
]

ds

= 2E
∫ t

0
f (s,Xn

s )un(s,Xn
s )ds = 2

∫ t

0
⟨f (s)un(s), ρn(s)⟩ds

≲ ∥f∥Lq
T H−1

p
∥un∥L∞t L2∩L2

T H1
2
∥ρn∥L∞T L2∩L2

T H1
2
≲ ∥f∥2

Lq
T H−1

p
∥ρ0∥2.
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Sketch of the proof–Markov property
▶ Idea: obtain the uniqueness martingale solution.

Definition 3 (Martingale solution)
Let µ ∈ P(Rd). We call a probability measure P ∈ P(CT) a martingale solution of
SDE (??) starting from µ, if P ◦ (ω0)

−1 = µ and for any f ∈ C∞
c ([0, T]× Rd),

Mf
t := u(t, ωt)− u(0, ω0)−

∫ t

0
f (r, ωr)dr, ω· ∈ CT ,

is a martingale under P with respect to the natural filtration Bs.

▶ Problem: There is no uniqueness to (PDE).

▶ We couldn’t show the existence of a solution to the martingale solution such that
the definition holds for all solutions u.

▶ We can find a bounded linear operator

S : Lq
T H−1

p → L∞
T L∞ ∩ L2

T H1
2

such that for any f , u = Sf solves (PDE).

▷ Once b ∈ L∞
T B−1

∞,2, we have the uniqueness and stability for (PDE), which implies
the uniqueness of the operator S.
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Sketch of the proof–Markov property

Definition 4 (Generalized martingale solution)
Let µ ∈ P(Rd). We call a probability measure P ∈ P(CT) a generalized martingale
solution of SDE (??) starting from µ and associated with the operator S, if
P ◦ (ω0)

−1 = µ and for any f ∈ C∞
c ([0, T]× Rd),

Mf
t := Sf (t, ωt)− Sf (0, ω0)−

∫ t

0
f (r, ωr)dr, w· ∈ CT ,

is a martingale under P with respect to the natural filtration Bs.

Theorem 3 (H.-Zhang 2023)

Assume µ has an L2 density w.r.t. the Lebesgue measure. There is a unique
generalized martingale solution w.r.t. the S.

▶ We can find a subsequence {nk}∞k=1 such that unk → Sf (S depends on this
subsequence). Then the law of a weak solution is just a generalized martingale
solution. The Markov property follows from the definition of the generalized
martingale solution.
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Further works

▶ Uniqueness in the supercritical cases.

▶ Characterize the limit of the approximation solutions to the SDEs
with drift b = ∇⊥GFF.

▶ RDEs with "singular" diffusion coefficients.

▶ · · ·
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Thank you!

Danke!
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