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N-particle systems

» Consider the following N-particle systems:

X' = v,
av = Ly KO - XY )de+ L

N.

K = VU : R? — R?: interaction kernel with some potential U
(e.g. U(x) = x>~ In|x]);

> {Lt(a)’l >, is a family of i.i.d. a-stable processes: collision and

i=1

background medium.

» L: mean-field scaling;
»
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> .: mean-field scaling;

» K = VU :R?— R’ interaction kernel with some potential U
(e.g. U(x) = x>~ In|x]);

> {Lt(a)’i 2, is a family of i.i.d. «-stable processes: collision and
background medium.

» Plasma physics (Vlasov 1968, Carrillo-Choi-Salem 2019,...);

Biosciences (Simon-Olivera 2018, Flandoli-Leimbach-Olivera 2019,...);
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Second order mean-field SDEs

» Propagation of chaos (Kac 1956, McKean 1967,..., Sznitman 1991,
..., Jabin-Wang 2016, 2018, Lacker 2018, 2021,...)

» (X VM) converges to the solution of the following mean-field
SDEs:

dXt == th[,
AV, = (K * px, ) (X,)dt + dL',

where pix, is the time marginal law of X;.
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Second order mean-field SDEs

» Propagation of chaos (Kac 1956, McKean 1967,..., Sznitman 1991,
..., Jabin-Wang 2016, 2018, Lacker 2018, 2021,...)

» (X VM) converges to the solution of the following mean-field
SDEs:

dXt == tht,
AV, = (K * px, ) (X,)dt + dL',

where pix, is the time marginal law of X;.

» It can be rephrased as the following second order mean-field SDE:

X, = (K * ) (X,) + L.
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Nonlinear Fokker-Planck equations

» Consider the following second order mean-field SDE:
dX, = (b * ) (X, X,)dr + dL, (M-SDE)

where (i, is the time marginal distribution of (X, X,).

» Suppose that f = f(¢,x,v) is the density of the time marginal distribu-
tion of (X;,X;). By Itd’s formula, f solves the following kinetic nonlin-
ear Fokker-Planck equation:

Of +v-Vof = ALf —divi((b*f) f). (NFPE)
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Nonlinear Fokker-Planck equations

» If b(x,v) = b(v) and then V, := X, solves the following first order
mean-field SDE:

AV, = (b * ) (V;)dt + dL,

where (i, is the time marginal distribution of V.

» The density of V; solves the following non-degenerate nonlinear Fokker-
Planck equation:

dip = A% p—div((b = p)p).
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Motivation-examples

» (Vlasov-Poisson-Fokker-Planck equation)
d=3;b=b(x)=x/|x|"2

» (Vorticity form of Navier-Stokes equation)
d = 2,3; b = b(v): Biot-Savart law.

» (Surface quasi-geostropic equation)
d=2;b=>b) = (—v/v|*,v1/|v]*): Riesz tranform.

» (Fractional porous medium equation with viscosity)
b = b(v) = v/|v|?"s with s € (0,d).
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Alms

» Aim 1: Well-posedness of the degenerate (nondegenerate) non-
linear Fokker-Planck equation (NFPE) under a general condition
of kernel b;
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Alms

» Aim 1: Well-posedness of the degenerate (nondegenerate) non-
linear Fokker-Planck equation (NFPE) under a general condition
of kernel b;

» Aim 2: Strong and weak well-posedness of second (first) order
mean-field SDE (M-SDE);

» Aim 3: Smoothness and long time behavior of the solution f (7, x, v).
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Anisotropic scaling

» Consider the following simple second order SDE:
dX, = Vidt, dv, = dL{®.

» We have the following scaling:

")y (@ a1
(X, V) = /Lx ds, L) ~ (15 X1, 15 V).

0
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Anisotropic scaling

» Consider the following simple second order SDE:
dX, = Vidt, dv, = dL{®.

» We have the following scaling:

t
(X, Vi) = ( / Lﬁ””ds,Lf“)) ~ (5 X, V).

0

» Forp = (ps,py) anda = (1 + «, 1), we introduce the anisotropic distance

L
|6 V)la =[x TFe + ||

and mixed-L? norm

il = ( [ ([ vteora)™ dv>

1/py
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» We have the following scaling:

t
(X, Vi) = ( / Lﬁ””ds,Lf“)) ~ (XL V),

0

» Forp = (ps,py) anda = (1 + «, 1), we introduce the anisotropic distance

L
|6 V)la =[x TFe + ||

and mixed-L? norm

il = ( [ ([ vteora)™ dv>

11 1
. + « + —
p pe Py

1/py

» Define
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Anisotropic Besov space

» Forr > 0and z € R, we also introduce the ball
B ={ eR¥: [z, <1}
» Let x{ be a symmetric C*°-function on R* with
X6(€) = 1 for € € BY and y3(€) = 0 for € ¢ BL.
» Forj € N, we define

azfja _ azf(/'fl)a , ~/17
() m {m( &) = xi( &, Ji>

X(a)(§)7 ]: O’
where for s € R and ¢ = (&1, &%),

2sa£ _ (25(14»04)517 2s£2).
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> Zj;o ¢;l(§) =1




» Let S be the space of all Schwartz functions on R?*? and S’ the
dual space of S, called the tempered distribution space.

» For given j > 0, the dyadic block operator R{ is defined on S’ by

Rif(z) = (8f) (2) = &ff #f (),

where the convolution is understood in the distributional sense.
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Definition 1 (Anisotropic Besov spaces)
Lets € Rand p € [1,00]%. The anisotropic Besov space is defined by

1/q
BISMI%a = f € 8, : HfHBISLq;a = Z (stqHleng) <0

Jj=z0

Similarly, for any p € [1, 00|, one defines the isotropic Besov spaces
B;, in RY.
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Definition 1 (Anisotropic Besov spaces)
Lets € Rand p € [1,00]%. The anisotropic Besov space is defined by

1/q
’. o '
B, o =(f€ES: WHB},q;a = Z (2’S‘7||R}’f|\,?) <0
j=0
Similarly, for any p € [1, 00|, one defines the isotropic Besov spaces
s d
B, ,in R%.
» SetB,,:=B, ,and B}, := B ..
» B, CB), CB)ly CBloc, 51 < s0.

» B, =BLliNB,L,=C""NC, s>0ands¢N.
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Examples

e Any finite measure z in R belongs to B(l).

e For given v € (0,d) , let K(x) = [x|™7, x € R?. Then for any
p € (£, 00], it holds that

K c B;i/pﬂ

e Suppose K € By for some s € Rand p € [1,00]. Let

K (x, V) = K(X), KZ(X7 V) = K(V)7 P = (p,oo), Py = (OO,p).
Then we have

K llgg1-e0s = (1Kl = [|K2lle;

Pza
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Well-posedness of SDE with singular drifts
> Lethe L B[/f: and consider the following SDE:

dX, = b(t, X,)dt + dL{™. (SDE)
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Well-posedness of SDE with singular drifts
> Lethe L B[/f}f and consider the following SDE:

dX, = b(t, X,)dt + dL{™. (SDE)

» Lete € (0,1)and
be(t,x) := e 'b(e™t, ex), Ll .= 6*1L£§2, X = 'X.a;.
Then
dXg = b (1, X7 )dr + L™~
and

a—14p,—4L o
157 S ]

B, Bp -
L? b Bphb L?b Bphh
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Well-posedness of SDE with singular drifts
> Lethe L B[/f}f and consider the following SDE:

dX, = b(t, X,)dt + dL{™. (SDE)

» Lete € (0,1)and
be(t,x) = e 'b(et, ex), LY = e L), X = 'X.a;.
Then
dX = b° (1, X7)de + dL{**
and

a—14p,—4L o
167 S 1|

B, Bp -
L? b Bphb L?b Bphh

» In the sense of this scaling, the sub-critical condition is:

d o
b+ —+—<a-1 (A)
Pp  9b
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Well-known results

» (Krylov-Rockner 2005) o =2, 8, = 0.
(A) = Strong well-posedness of (SDE);
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Mean-field SDEs case
» Consider the following Mean-field SDE:

dX, = (b * ) (X,)de + L.
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Mean-field SDEs case
» Consider the following Mean-field SDE:

dX, = (b o) (X,)dr + dL;.
» (Chaudru de Raynal-Jabir-Menozzi 2022)

Br < 0+ (A) = weak well-posedness;

d «
—Bp + — + — < —a — 2 = strong well-posedness.
Pa G 2
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Mean-field SDEs case
» Consider the following Mean-field SDE:

dX, = (b o) (X,)dr + dL;.
» (Chaudru de Raynal-Jabir-Menozzi 2022)

Br < 0+ (A) = weak well-posedness;

d «
—Bp + — + — < —a — 2 = strong well-posedness.
Pa G 2

> B, > —1 is dropped.
» It can not cover some singular kernels like b(z,x) = x/|x|! € B} with

d
B+ —=d—-1(>a—1).
Pb
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Initial data and singular kernels

» Consider the following Mean-field SDE (b € L{"B/"):

Pb
dX, = (b ) (X,)dt + dL.

> Assume i, ~ o € BS for some 5y < 0. Then,

with {ﬂ = By +

by e L"B’
' 1+1/p=1/py+1/po.

px?
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Initial data and singular kernels

» Consider the following Mean-field SDE (b < L{"B)"):
dX, = (b ) (X,)dt + dL.

> Assume i, ~ o € BS for some 5y < 0. Then,

with {ﬁ = By +

by e L"B’
' 1+1/p=1/py+1/po.

px?

» Sub-critical condition:

d d «
—Bot+——Bp+—+—<d+a-1
Po Po qb

» (5o,po) = (0,1) = Chaudru de Raynal-Jabir-Menozzi 2022.

(B)
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Examples

> Letl <s<d.

e d
b(x) =Vx['"* €B,» with — B+ — =s.
Pb

» Condition (B) is the following
d
—Bo+—<d—s+a-—1.
Po
» Letd € [0,a—1).
b(x) = V|’ € B{.
» Condition (B) is the following

d
—Bo+—<a—1-80.
Po
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Main results
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Kinetic nonlinear FPE

(H) Leta € (1,2], g € (5%] and p,,p, € [1,00)* with 1 < 1/p, + 1/p,.
Let fo € (—a+ ,0).
Assume that

d 1
—ﬂo+a-p——ﬁl,+a-‘—+3§(a+2)d+a—1

0 P, 49
and
d d a
—2Bp+a-——Pp+a-—+ — < (a+2)d+a.
0 b qb
> Set
Ko = [l o= [l
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Kinetic nonlinear FPE

Theorem 2
Suppose (H) holds and x;, < oco. There is a constant Cyp > 0 such that if

roky < Co, (1)

then there is a unique smooth solution f to (NFPE).
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Kinetic nonlinear FPE

Theorem 2
Suppose (H) holds and x;, < oco. There is a constant Cyp > 0 such that if

roky < Co, (1)

then there is a unique smooth solution f to (NFPE). Moreover,

(i) ifa-d/p, > o — a/q, — 1 and fj is a probability density function. Then for
any § >0

sup (1425 Ol , ) < oo

>1

(ii) we can drop the smallness assumption (1) if p, = (1,1) or divb = 0, p, =
(po,po) and fo € Uget,o0)Bplgia-
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Second order mean-field SDE

» Consider the following second order mean-field SDE:
dX, = (b * ) (X, X)dr + L, @)
where 1, is the time marginal distribution of (X;, X;) and assume (Xo, Xo) ~ fo.

Theorem 3
Under the same conditions as in Theorem 2,

m if
d d
—Bota- = -Bta- S+ L <(a+2d+a—1,
py Py 9
then there is a unique weak solution to (2);

| If

d d 3
—Bota- = —B+a- =+ L <(a+2)d+2a—2
Do Pp b 2

24+
and (1 — A,)¥Fa)p € L‘”’be”;a, then there is a unique strong solution to (2).

24/32



Applications
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Fractional Vlasov-Poisson-Fokker-Planck equation

» Let d > 3. Consider the following fractional Vlasov-Poisson-
Fokker-Planck equation:

Of+v-Vof = Af+AVU-Vf, (VPEP)

where o € (1,2], v = £1 stands for the attractive or repulsive
force in physics, respectively, and

U(t,x) := Mdydv.

R |y|d=2
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» Two cases for the well-posedness:

g (ot1/2

(c0,1),a

fo € BY(11a)d/2a).1).a (@ = 2 Carrillo-Soler 1997) and fo €
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Two cases for the well-posedness:

g (ot1/2

(c0,1),a

fo € BY(11a)d/2a).1).a (@ = 2 Carrillo-Soler 1997) and fo €

Decay estimate for the force:

_ (4a)d=1)
VU oo 567, 121
When o = 2 and ||fy||,1 is small enough, it is obtained in Ono-Strauss 2000
(Here we only require [|fy[| .5, small enough. There is no any restriction on
s

/o).

Well-posedness for the related mean-field SDE, which provides a microscopic
probabilistic explanation.
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Fractional Navier-Stocks equation

» Consider the following 2-dim and 3-dim vorticity fractional Navier-
Stocks equation in R? (R3):
ow=Aw+u Vo, d=2; (2D)
Ow=Aw+u -Vw+w- -Vu, d=23. (3D)
» Velocity u can be recovered from w by the Biot-Savart law:
u=Ky*w,d=2,3, where

1 —x» —xp 1 xxh 3
KO) = —(—2, =0, Kyxh=—""" heR3.
20 = g pp B = ke
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2D case

(Well-posedness)
» Whenpy = 1:

wo € Uyel1,00)BT,", wo € L' (a=2 Ben-Artzi 1994);

wo € B%;‘j (small enough).

> It seems open to give a well-posedness result for any wo € B?,Oo.
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2D case

(Well-posedness)
» Whenpy = 1:

wo € Uyel1,00)BT,", wo € L' (a=2 Ben-Artzi 1994);

wo € B%;‘j (small enough).

> It seems open to give a well-posedness result for any wo € B?,Oo.
» When py = oc:

I+a
— ey
wo € B ?

> In this case, we can apply it to the two dimensional Brownian white noise
initial data wo € B;OI_.

» Well-posedness for the related mean-field SDE.

29/32



Well-known results

» Giga, Miyakawa, Osada (1988) established the existence of 2d Navier-
Stokes flow with measures as initial vorticity, the uniqueness only for
atomic part of the initial measure being small.

» Gallagher and Gallay (2005) solved the uniqueness problem for the 2d
Navier-Stokes equation with a measure as initial vorticity.

» Zhang (2021) obtain the existence of weak solutions for mean-field SDE
with b € L[ by the maximal principle, where ‘;1 + % < 2.
e Giga,Y. Miyakawa,T.,Osada,H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational

Mech. Anal. 104, 223-250 (1988).

e Gallagher I. and Gallay T. : Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial
vorticity Math. Ann. 332, 287-327 (2005).

e Zhang X.: Weak solutions of McKean-Vlasov SDEs with supercritical drifts. To appear in Commun. Math. Stat.
Preprint version available at https:/arxiv.org/abs/2010.15330 (2021).
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3D case

a+1)/2+

» (Well-posedness) wy € BY /o and wy € B small enough.
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3D case

@+D/2 small enough.

» (Well-posedness) wy € Bg/” and wy € B;(
» (Decay) for any p € [2,00] and 5 > 0O:

3-3/p

lw(llgs S 52 21

» Well-posedness for the related mean-field SDE, which provides a mi-
croscopic probabilistic explanation.
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Thank you for attention!

Merci beaucoup!
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