Second order fractional mean-field SDEs with singular kernels

Zimo Hao¹

zhao@math.uni-bielefeld.de

(Joint work with Michael Röckner¹ and Xicheng Zhang²)

¹Bielefeld University

²Beijing Institute of Technology

arXiv:2302.04392

18-22 December, 2023

Paris, Institut Henri Poincaré

1 Background and motivation

2 Main results

3 Applications

- Fractional Vlasov-Poisson-Fokker-Planck equation
- Fractional Navier-Stocks equation

Background and motivation

N-particle systems

• Consider the following *N*-particle systems:

$$\begin{cases} \mathrm{d}X_t^{N,i} = V_t^{N,i} \mathrm{d}t, \\ \mathrm{d}V_t^{N,i} = \frac{1}{N} \sum_{j \neq i} K(X_t^{N,i} - X_t^{N,j}) \mathrm{d}t + L_t^{(\alpha),i}. \end{cases}$$

N-particle systems

• Consider the following *N*-particle systems:

$$\begin{cases} \mathrm{d}X_t^{N,i} = V_t^{N,i} \mathrm{d}t, \\ \mathrm{d}V_t^{N,i} = \frac{1}{N} \sum_{j \neq i} K(X_t^{N,i} - X_t^{N,j}) \mathrm{d}t + L_t^{(\alpha),i}. \end{cases}$$

$$\blacktriangleright \frac{1}{N}$$
: mean-field scaling;

- K = ∇U : ℝ^d → ℝ^d: interaction kernel with some potential U (e.g. U(x) = |x|^{2-d}, ln |x|);
- $\{L_t^{(\alpha),i}\}_{i=1}^{\infty}$ is a family of i.i.d. α -stable processes: collision and background medium.
- Plasma physics (Vlasov 1968, Carrillo-Choi-Salem 2019,...); Biosciences (Simon-Olivera 2018, Flandoli-Leimbach-Olivera 2019,...);

Second order mean-field SDEs

- Propagation of chaos (Kac 1956, McKean 1967,..., Sznitman 1991, ..., Jabin-Wang 2016, 2018, Lacker 2018, 2021,...)
- $(X_t^{N,i}, V_t^{N,i})$ converges to the solution of the following mean-field SDEs:

$$\begin{cases} \mathrm{d}X_t = V_t \mathrm{d}t, \\ \mathrm{d}V_t = (K * \mu_{X_t})(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}, \end{cases}$$

where μ_{X_t} is the time marginal law of X_t .

Second order mean-field SDEs

- Propagation of chaos (Kac 1956, McKean 1967,..., Sznitman 1991, ..., Jabin-Wang 2016, 2018, Lacker 2018, 2021,...)
- $(X_t^{N,i}, V_t^{N,i})$ converges to the solution of the following mean-field SDEs:

$$\begin{cases} \mathrm{d}X_t = V_t \mathrm{d}t, \\ \mathrm{d}V_t = (K * \mu_{X_t})(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}, \end{cases}$$

where μ_{X_t} is the time marginal law of X_t .

▶ It can be rephrased as the following second order mean-field SDE:

$$\ddot{X}_t = (K * \mu_t)(X_t) + \dot{L}_t^{(\alpha)}.$$

Nonlinear Fokker-Planck equations

• Consider the following second order mean-field SDE:

$$d\dot{X}_t = (b * \mu_t)(X_t, \dot{X}_t)dt + dL_t^{(\alpha)}, \qquad (\text{M-SDE})$$

where μ_t is the time marginal distribution of (X_t, \dot{X}_t) .

Suppose that f = f(t, x, v) is the density of the time marginal distribution of (X_t, \dot{X}_t) . By Itô's formula, f solves the following kinetic nonlinear Fokker-Planck equation:

$$\partial_t f + v \cdot \nabla_x f = \Delta_v^{\frac{\alpha}{2}} f - \operatorname{div}_v((b * f) f).$$
 (NFPE)

Nonlinear Fokker-Planck equations

• If b(x, v) = b(v) and then $V_t := \dot{X}_t$ solves the following first order mean-field SDE:

$$\mathrm{d}V_t = (b * \mu_t)(V_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)},$$

where μ_t is the time marginal distribution of V_t .

The density of V_t solves the following non-degenerate nonlinear Fokker-Planck equation:

$$\partial_t \rho = \Delta^{\frac{\alpha}{2}} \rho - \operatorname{div}((b * \rho)\rho).$$

Motivation-examples

- ► (Vlasov-Poisson-Fokker-Planck equation) $d = 3; b = b(x) = x/|x|^{d-2}.$
- ► (Vorticity form of Navier-Stokes equation) d = 2, 3; b = b(v): Biot-Savart law.
- ► (Surface quasi-geostropic equation) $d = 2; b = b(v) = (-v_2/|v|^3, v_1/|v|^3)$: Riesz tranform.
- ▶ (Fractional porous medium equation with viscosity)
 b = b(v) = v/|v|^{d-s} with s ∈ (0, d).

Aims

Aim 1: Well-posedness of the degenerate (nondegenerate) nonlinear Fokker-Planck equation (NFPE) under a general condition of kernel b;

Aims

- Aim 1: Well-posedness of the degenerate (nondegenerate) nonlinear Fokker-Planck equation (NFPE) under a general condition of kernel b;
- <u>Aim 2</u>: Strong and weak well-posedness of second (first) order mean-field SDE (M-SDE);

Aims

- Aim 1: Well-posedness of the degenerate (nondegenerate) nonlinear Fokker-Planck equation (NFPE) under a general condition of kernel b;
- <u>Aim 2</u>: Strong and weak well-posedness of second (first) order mean-field SDE (M-SDE);
- Aim 3: Smoothness and long time behavior of the solution f(t, x, v).

Anisotropic scaling

► Consider the following simple second order SDE:

$$\mathrm{d}X_t = V_t\mathrm{d}t, \quad \mathrm{d}V_t = \mathrm{d}L_t^{(\alpha)}.$$

▶ We have the following scaling:

$$(X_t, V_t) = \left(\int_0^t L_s^{(\alpha)} \mathrm{d}s, L_t^{(\alpha)}\right) \sim \left(t^{\frac{1+\alpha}{\alpha}} X_1, t^{\frac{1}{\alpha}} V_1\right).$$

Anisotropic scaling

• Consider the following simple second order SDE:

$$\mathrm{d}X_t = V_t\mathrm{d}t, \quad \mathrm{d}V_t = \mathrm{d}L_t^{(\alpha)}.$$

▶ We have the following scaling:

$$(X_t, V_t) = \left(\int_0^t L_s^{(\alpha)} \mathrm{d}s, L_t^{(\alpha)}\right) \sim \left(t^{\frac{1+\alpha}{\alpha}} X_1, t^{\frac{1}{\alpha}} V_1\right).$$

► For $p = (p_x, p_v)$ and $a = (1 + \alpha, 1)$, we introduce the anisotropic distance

$$|(x,v)|_a := |x|^{\frac{1}{1+\alpha}} + |v|$$

and mixed- L^p norm

$$||f||_{L^p} := \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x,v)|^{p_x} dx\right)^{p_v/p_x} dv\right)^{1/p_v}$$

Anisotropic scaling

• Consider the following simple second order SDE:

$$\mathrm{d}X_t = V_t\mathrm{d}t, \quad \mathrm{d}V_t = \mathrm{d}L_t^{(\alpha)}.$$

▶ We have the following scaling:

$$(X_t, V_t) = \left(\int_0^t L_s^{(\alpha)} \mathrm{d}s, L_t^{(\alpha)}\right) \sim \left(t^{\frac{1+\alpha}{\alpha}} X_1, t^{\frac{1}{\alpha}} V_1\right).$$

► For $p = (p_x, p_v)$ and $a = (1 + \alpha, 1)$, we introduce the anisotropic distance

$$|(x,v)|_a := |x|^{\frac{1}{1+\alpha}} + |v|$$

and mixed- L^p norm

$$||f||_{L^p} := \left(\int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} |f(x,v)|^{p_x} \mathrm{d}x\right)^{p_v/p_x} \mathrm{d}v\right)^{1/p_v}$$

Define

$$\boldsymbol{a}\cdot\frac{1}{\boldsymbol{p}}:=\frac{1+\alpha}{p_x}+\frac{1}{p_y}.$$

Anisotropic Besov space

For r > 0 and $z \in \mathbb{R}^{2d}$, we also introduce the ball

$$B_r^a := \{ z' \in \mathbb{R}^{2d} : |z|_a \leqslant r \}.$$

• Let χ_0^a be a symmetric C^{∞} -function on \mathbb{R}^{2d} with

$$\chi_0^a(\xi) = 1$$
 for $\xi \in B_1^a$ and $\chi_0^a(\xi) = 0$ for $\xi \notin B_2^a$.

▶ For $j \in \mathbb{N}$, we define

$$\phi_j^a(\xi) := \begin{cases} \chi_0^a(2^{-ja}\xi) - \chi_0^a(2^{-(j-1)a}\xi), & j \ge 1, \\ \chi_0^a(\xi), & j = 0, \end{cases}$$

where for $s \in \mathbb{R}$ and $\xi = (\xi_1, \xi_2)$,

$$2^{sa}\xi = (2^{s(1+\alpha)}\xi_1, 2^s\xi_2).$$

- ► Let S be the space of all Schwartz functions on ℝ^{2d} and S' the dual space of S, called the tempered distribution space.
- ▶ For given $j \ge 0$, the dyadic block operator \mathcal{R}_i^a is defined on \mathcal{S}' by

$$\mathcal{R}_j^{\boldsymbol{a}} f(z) := (\phi_j^{\boldsymbol{a}} \hat{f})^{\check{}}(z) = \check{\phi}_j^{\boldsymbol{a}} * f(z),$$

where the convolution is understood in the distributional sense.

Definition 1 (Anisotropic Besov spaces)

Let $s \in \mathbb{R}$ and $p \in [1, \infty]^2$. The anisotropic Besov space is defined by

$$\mathbf{B}^{s}_{\boldsymbol{p},q;\boldsymbol{a}} := \left\{ f \in \mathcal{S}' : \|f\|_{\mathbf{B}^{s}_{\boldsymbol{p},q;\boldsymbol{a}}} := \left(\sum_{j \ge 0} \left(2^{jsq} \|\mathcal{R}^{\boldsymbol{a}}_{j}f\|_{\boldsymbol{p}}^{q} \right) \right)^{1/q} < \infty \right\}.$$

Similarly, for any $p \in [1, \infty]$, one defines the isotropic Besov spaces $\mathbf{B}_{p,q}^{s}$ in \mathbb{R}^{d} .

Definition 1 (Anisotropic Besov spaces)

Let $s \in \mathbb{R}$ and $p \in [1, \infty]^2$. The anisotropic Besov space is defined by

$$\mathbf{B}^{s}_{\boldsymbol{p},q;\boldsymbol{a}} := \left\{ f \in \mathcal{S}' : \|f\|_{\mathbf{B}^{s}_{\boldsymbol{p},q;\boldsymbol{a}}} := \left(\sum_{j \ge 0} \left(2^{jsq} \|\mathcal{R}^{\boldsymbol{a}}_{j}f\|_{\boldsymbol{p}}^{q} \right) \right)^{1/q} < \infty \right\}.$$

Similarly, for any $p \in [1, \infty]$, one defines the isotropic Besov spaces $\mathbf{B}_{p,q}^{s}$ in \mathbb{R}^{d} .

Examples

- Any finite measure μ in \mathbb{R}^d belongs to \mathbf{B}_1^0 .
- For given $\gamma \in (0, d)$, let $K(x) = |x|^{-\gamma}$, $x \in \mathbb{R}^d$. Then for any $p \in (\frac{d}{\gamma}, \infty]$, it holds that

$$K \in \mathbf{B}_p^{d/p-\gamma}$$

Suppose K ∈ B^s_p for some s ∈ ℝ and p ∈ [1,∞]. Let
 K₁(x, v) = K(x), K₂(x, v) = K(v), p₁ = (p,∞), p₂ = (∞, p).

Then we have

$$\|K_1\|_{\mathbf{B}^{(1+\alpha)s}_{p_1,a}} \simeq \|K\|_{\mathbf{B}^s_p} \simeq \|K_2\|_{\mathbf{B}^s_{p_2;a}}.$$

Well-posedness of SDE with singular drifts

▶ Let $b \in L_t^{q_b} \mathbf{B}_{p_b}^{\beta_b}$ and consider the following SDE:

$$dX_t = b(t, X_t)dt + dL_t^{(\alpha)}.$$
 (SDE)

Well-posedness of SDE with singular drifts

▶ Let $b \in L_t^{q_b} \mathbf{B}_{p_b}^{\beta_b}$ and consider the following SDE:

$$dX_t = b(t, X_t)dt + dL_t^{(\alpha)}.$$
 (SDE)

▶ Let $\varepsilon \in (0, 1)$ and $b^{\varepsilon}(t, x) := \varepsilon^{\alpha - 1} b(\varepsilon^{\alpha} t, \varepsilon x), \quad L_t^{(\alpha), \varepsilon} := \varepsilon^{-1} L_{\varepsilon^{\alpha} t}^{(\alpha)}, \quad X_t^{\varepsilon} := \varepsilon^{-1} X_{\varepsilon^{\alpha} t}.$ Then

$$\mathrm{d}X_t^\varepsilon = b^\varepsilon(t, X_t^\varepsilon)\mathrm{d}t + \mathrm{d}L_t^{(\alpha),\varepsilon}$$

and

$$\|b^{\varepsilon}\|_{L^{q_b}_{t}\mathbf{B}^{\beta_b}_{p_b}} \sim \varepsilon^{\alpha-1+\beta_b-\frac{d}{p_b}-\frac{\alpha}{q_b}}\|b\|_{L^{q_b}_{t}\mathbf{B}^{\beta_b}_{p_b}}.$$

Well-posedness of SDE with singular drifts

▶ Let $b \in L_t^{q_b} \mathbf{B}_{p_b}^{\beta_b}$ and consider the following SDE:

$$dX_t = b(t, X_t)dt + dL_t^{(\alpha)}.$$
 (SDE)

▶ Let $\varepsilon \in (0, 1)$ and $b^{\varepsilon}(t, x) := \varepsilon^{\alpha - 1} b(\varepsilon^{\alpha} t, \varepsilon x), \quad L_t^{(\alpha), \varepsilon} := \varepsilon^{-1} L_{\varepsilon^{\alpha} t}^{(\alpha)}, \quad X_t^{\varepsilon} := \varepsilon^{-1} X_{\varepsilon^{\alpha} t}.$ Then

$$\mathrm{d}X_t^\varepsilon = b^\varepsilon(t, X_t^\varepsilon)\mathrm{d}t + \mathrm{d}L_t^{(\alpha),\varepsilon}$$

and

$$\|b^{\varepsilon}\|_{L^{q_b}_{t}\mathbf{B}^{\beta_b}_{p_b}} \sim \varepsilon^{\alpha-1+\beta_b-\frac{d}{p_b}-\frac{\alpha}{q_b}}\|b\|_{L^{q_b}_{t}\mathbf{B}^{\beta_b}_{p_b}}.$$

In the sense of this scaling, the sub-critical condition is:

$$-\beta_b + \frac{d}{p_b} + \frac{\alpha}{q_b} < \alpha - 1 \tag{A}$$

► (Krylov-Röckner 2005) $\alpha = 2, \beta_b = 0.$ (A) \Rightarrow Strong well-posedness of (SDE);

- ► (Krylov-Röckner 2005) $\alpha = 2, \beta_b = 0.$ (A) \Rightarrow Strong well-posedness of (SDE);
- ► (Flandoli-Issoglio-Russo 2016, Zhang-Zhao 2018) $\alpha = 2, \beta_b \in (-\frac{1}{2}, 0).$

 $(A) \Rightarrow$ Weak well-posedness of (SDE);

- ► (Krylov-Röckner 2005) $\alpha = 2, \beta_b = 0.$ (A) \Rightarrow Strong well-posedness of (SDE);
- ► (Flandoli-Issoglio-Russo 2016, Zhang-Zhao 2018) $\alpha = 2, \beta_b \in (-\frac{1}{2}, 0).$

 $(A) \Rightarrow$ Weak well-posedness of (SDE);

- ▶ (Priola 2010, Zhang 2012, Xie-Zhang 2020, Ling-Zhao 2021, Athreya-Butkovsky-Mytnik 2020, Chen-Zhang-Zhao 2021,...) $\alpha \in (1, 2)$ and $\alpha \in (0, 1)$.
- (Chaudru de Raynal 2017, H.-Wu-Zhang 2020, Chaudru de Raynal-Menozzi 2022...)

Second order case.

- ► (Krylov-Röckner 2005) $\alpha = 2, \beta_b = 0.$ (A) \Rightarrow Strong well-posedness of (SDE);
- ► (Flandoli-Issoglio-Russo 2016, Zhang-Zhao 2018) $\alpha = 2, \beta_b \in (-\frac{1}{2}, 0).$ $\rightarrow \beta_b \in [-1, 0)$ and divb = 0 (H.-Zhang 2023) (A) \Rightarrow Weak well-posedness of (SDE);
- ▶ (Priola 2010, Zhang 2012, Xie-Zhang 2020, Ling-Zhao 2021, Athreya-Butkovsky-Mytnik 2020, Chen-Zhang-Zhao 2021,...) $\alpha \in (1, 2)$ and $\alpha \in (0, 1)$.
- (Chaudru de Raynal 2017, H.-Wu-Zhang 2020, Chaudru de Raynal-Menozzi 2022...)

Second order case.

Mean-field SDEs case

• Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b * \mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

Mean-field SDEs case

► Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b * \mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

► (Chaudru de Raynal-Jabir-Menozzi 2022)

 $\beta_b \leq 0 + (A) \Rightarrow$ weak well-posedness;

$$-\beta_b + \frac{d}{p_d} + \frac{\alpha}{q_b} < \frac{3}{2}\alpha - 2 \Rightarrow$$
 strong well-posedness.

Mean-field SDEs case

• Consider the following Mean-field SDE:

$$\mathrm{d}X_t = (b*\mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}.$$

▶ (Chaudru de Raynal-Jabir-Menozzi 2022)

 $\beta_b \leq 0 + (A) \Rightarrow$ weak well-posedness;

$$-\beta_b + \frac{d}{p_d} + \frac{\alpha}{q_b} < \frac{3}{2}\alpha - 2 \Rightarrow$$
 strong well-posedness.

β_b > -¹/₂ is dropped.
 It can not cover some singular kernels like b(t, x) = x/|x|^d ∈ B^{β_b}_{p_b} with

$$-\beta_b + \frac{d}{p_b} = d - 1(>\alpha - 1).$$

Initial data and singular kernels

• Consider the following Mean-field SDE ($b \in L_t^{q_b} \mathbf{B}_{p_b}^{\beta_b}$):

$$\mathrm{d}X_t = (b * \mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}$$

▶ Assume $\mu_t \sim \mu_0 \in \mathbf{B}_{p_0}^{\beta_0}$ for some $\beta_0 \leq 0$. Then,

$$b*\mu \in L^{q_b}_t \mathbf{B}^{eta}_{p,x}, \quad ext{with} egin{cases} eta = eta_b + eta_0 \ 1+1/p = 1/p_b + 1/p_0. \end{cases}$$

Initial data and singular kernels

• Consider the following Mean-field SDE ($b \in L_t^{q_b} \mathbf{B}_{p_b}^{\beta_b}$):

$$\mathrm{d}X_t = (b * \mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}$$

▶ Assume $\mu_t \sim \mu_0 \in \mathbf{B}_{p_0}^{\beta_0}$ for some $\beta_0 \leq 0$. Then,

$$b * \mu \in L_t^{q_b} \mathbf{B}_{p,x}^{eta}, \quad ext{with} \begin{cases} eta = eta_b + eta_0 \\ 1 + 1/p = 1/p_b + 1/p_0. \end{cases}$$

$$-\beta_0 + \frac{d}{p_0} - \beta_b + \frac{d}{p_b} + \frac{\alpha}{q_b} < d + \alpha - 1$$
 (B)

Initial data and singular kernels

► Consider the following Mean-field SDE ($b \in L_t^{q_b} \mathbf{B}_{p_b}^{\beta_b}$):

$$\mathrm{d}X_t = (b * \mu_t)(X_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}$$

▶ Assume $\mu_t \sim \mu_0 \in \mathbf{B}_{p_0}^{\beta_0}$ for some $\beta_0 \leq 0$. Then,

$$b * \mu \in L^{q_b}_t \mathbf{B}^{eta}_{p,x}, \quad ext{with} egin{cases} eta = eta_b + eta_0 \ 1 + 1/p = 1/p_b + 1/p_0. \end{cases}$$

$$-\beta_0 + \frac{d}{p_0} - \beta_b + \frac{d}{p_b} + \frac{\alpha}{q_b} < d + \alpha - 1$$
 (B)

▶ $(\beta_0, p_0) = (0, 1) \rightarrow$ Chaudru de Raynal-Jabir-Menozzi 2022.

Examples

► Let
$$1 \le s < d$$
.

$$b(x) = \nabla |x|^{1-s} \in \dot{\mathbf{B}}_{p_b}^{-\beta_b} \quad \text{with} \quad -\beta_b + \frac{d}{p_b} = s.$$
► Condition (B) is the following

$$-\beta_0 + \frac{d}{p_0} < d - s + \alpha - 1.$$

• Let
$$\theta \in [0, \alpha - 1)$$
.

$$b(x) = |\nabla|^{\theta} \delta \in \mathbf{B}_1^{-\theta}.$$

► Condition (B) is the following

$$-\beta_0 + \frac{d}{p_0} < \alpha - 1 - \theta.$$

Main results

(H) Let $\alpha \in (1,2]$, $q_b \in (\frac{\alpha}{\alpha-1}]$ and $p_0, p_b \in [1,\infty]^2$ with $1 \le 1/p_0 + 1/p_b$. Let $\beta_0 \in (-\alpha + \frac{\alpha}{q_b}, 0)$. Assume that

$$-\beta_0 + \boldsymbol{a} \cdot \frac{\boldsymbol{d}}{\boldsymbol{p}_0} - \beta_b + \boldsymbol{a} \cdot \frac{\boldsymbol{d}}{\boldsymbol{p}_b} + \frac{\alpha}{q_b} \leq (\alpha + 2)\boldsymbol{d} + \alpha - 1$$

and

$$-2\beta_0 + \boldsymbol{a} \cdot \frac{d}{\boldsymbol{p}_0} - \beta_b + \boldsymbol{a} \cdot \frac{d}{\boldsymbol{p}_b} + \frac{\alpha}{q_b} < (\alpha + 2)d + \alpha.$$

Set

$$\kappa_0 := \|f_0\|_{\mathbf{B}^{eta_0}_{p_0,a}}, \quad \kappa_b := \|b\|_{L^{q_b}_t\mathbf{B}^{eta_b}_{p_b,a}}.$$

Theorem 2

Suppose (**H**) holds and $\kappa_b < \infty$. There is a constant $C_0 > 0$ such that if

$$\kappa_0 \kappa_b \le C_0,\tag{1}$$

then there is a unique smooth solution f to (NFPE).

Theorem 2

Suppose (H) holds and $\kappa_b < \infty$. There is a constant $C_0 > 0$ such that if

$$\kappa_0 \kappa_b \le C_0, \tag{1}$$

then there is a unique smooth solution f to (NFPE). Moreover,

(i) if *a* · *d*/*p_b* > α − α/*q_b* − 1 and *f*₀ is a probability density function. Then for any β ≥ 0

$$\sup_{t\geq 1}\left(\frac{t^{(\alpha+2)d-a\cdot(d/p_0)}}{\alpha}\|f(t)\|_{\mathbf{B}_{p_0;a}^{\beta}}\right)<\infty.$$

Theorem 2

Suppose (H) holds and $\kappa_b < \infty$. There is a constant $C_0 > 0$ such that if

$$\kappa_0 \kappa_b \le C_0,\tag{1}$$

then there is a unique smooth solution f to (NFPE). Moreover,

(i) if *a* · *d*/*p_b* > α − α/*q_b* − 1 and *f*₀ is a probability density function. Then for any β ≥ 0

$$\sup_{t\geq 1}\left(\frac{t^{(\alpha+2)d-\alpha\cdot(d/p_0)}}{\alpha}\|f(t)\|_{\mathbf{B}_{p_0;a}^{\beta}}\right)<\infty.$$

(ii) we can drop the smallness assumption (1) if $\mathbf{p}_0 = (1, 1)$ or div $b \equiv 0, \mathbf{p}_0 = (p_0, p_0)$ and $f_0 \in \bigcup_{q \in [1,\infty)} \mathbf{B}_{\mathbf{p}_0,q;\mathbf{a}}^{\beta_0}$.

Second order mean-field SDE

► Consider the following second order mean-field SDE:

$$\mathrm{d}\dot{X}_t = (b*\mu_t)(X_t, \dot{X}_t)\mathrm{d}t + \mathrm{d}L_t^{(\alpha)}, \qquad (2)$$

where μ_t is the time marginal distribution of (X_t, \dot{X}_t) and assume $(X_0, \dot{X}_0) \sim f_0$.

Theorem 3

Under the same conditions as in Theorem 2,

if

$$-\beta_0 + \boldsymbol{a} \cdot \frac{d}{\boldsymbol{p}_0} - \beta_b + \boldsymbol{a} \cdot \frac{d}{\boldsymbol{p}_b} + \frac{\alpha}{q_b} < (\alpha + 2)d + \alpha - 1,$$

then there is a unique weak solution to (2);

If

$$-\beta_0 + \boldsymbol{a} \cdot \frac{d}{p_0} - \beta_b + \boldsymbol{a} \cdot \frac{d}{p_b} + \frac{\alpha}{q_b} < (\alpha + 2)d + \frac{3}{2}\alpha - 2$$

and $(1 - \Delta_x)^{\frac{2+\alpha}{4(1+\alpha)}} b \in L^{q_b} \mathbf{B}_{p_b;a}^{\beta_b}$, then there is a unique strong solution to (2).

Applications

Fractional Vlasov-Poisson-Fokker-Planck equation

• Let $d \ge 3$. Consider the following fractional Vlasov-Poisson-Fokker-Planck equation:

$$\partial_t f + v \cdot \nabla_x f = \Delta_v^{\frac{\alpha}{2}} f + \gamma \nabla U \cdot \nabla_v f, \qquad (\text{VPFP})$$

where $\alpha \in (1,2]$, $\gamma = \pm 1$ stands for the attractive or repulsive force in physics, respectively, and

$$U(t,x) := \int_{\mathbb{R}^{2d}} \frac{f(t,x-y,v)}{|y|^{d-2}} \mathrm{d}y \mathrm{d}v.$$

► Two cases for the well-posedness:

$$f_0 \in \mathbf{B}^0_{((1+\alpha)d/(2\alpha),1),a}$$
 ($\alpha = 2$ Carrillo-Soler 1997) and $f_0 \in \mathbf{B}^{-(2\alpha+1)/2}_{(\infty,1),a}$.

► Two cases for the well-posedness:

 $f_0 \in \mathbf{B}^0_{((1+\alpha)d/(2\alpha),1),a}$ ($\alpha = 2$ Carrillo-Soler 1997) and $f_0 \in \mathbf{B}^{-(2\alpha+1)/2}_{(\infty,1),a}$.

Decay estimate for the force:

$$\|\nabla U(t)\|_{\infty} \lesssim t^{-\frac{(1+\alpha)(d-1)}{\alpha}}, \quad t \ge 1.$$

When $\alpha = 2$ and $||f_0||_{L^1}$ is small enough, it is obtained in Ono-Strauss 2000 (Here we only require $||f_0||_{\mathbf{B}^{\beta_0}_{p_0,a}}$ small enough. There is no any restriction on $||f_0||_{L^1}$).

 Well-posedness for the related mean-field SDE, which provides a microscopic probabilistic explanation.

Fractional Navier-Stocks equation

 Consider the following 2-dim and 3-dim vorticity fractional Navier-Stocks equation in R² (R³):

$$\partial_t \omega = \Delta^{\frac{\alpha}{2}} \omega + u \cdot \nabla \omega, \quad d = 2;$$
 (2D)

$$\partial_t \omega = \Delta^{\frac{\alpha}{2}} \omega + u \cdot \nabla \omega + \omega \cdot \nabla u, \quad d = 3.$$
 (3D)

Velocity *u* can be recovered from ω by the Biot-Savart law: $u = K_d * \omega, d = 2, 3$, where

$$K_2(x) = \frac{1}{2\pi} \left(\frac{-x_2}{|x|^2}, \frac{-x_1}{|x|^2} \right), \quad K_3(x)h = \frac{1}{4\pi} \frac{x \times h}{|x|^3}, \ h \in \mathbb{R}^3.$$

2D case

(Well-posedness)

• When $p_0 = 1$:

 $\omega_0 \in \bigcup_{q \in [1,\infty)} \mathbf{B}_{1,q}^{2-\alpha}, \quad \omega_0 \in L^1 \ (\alpha = 2 \ \text{Ben-Artzi 1994});$

$$\omega_0 \in \mathbf{B}_{1,\infty}^{2-\alpha}$$
 (small enough).

▷ It seems open to give a well-posedness result for any $\omega_0 \in \mathbf{B}_{1,\infty}^0$.

2D case

(Well-posedness)

• When $p_0 = 1$:

 $\omega_0 \in \bigcup_{q \in [1,\infty)} \mathbf{B}_{1,q}^{2-\alpha}, \quad \omega_0 \in L^1 \ (\alpha = 2 \text{ Ben-Artzi 1994});$

$$\omega_0 \in \mathbf{B}_{1,\infty}^{2-\alpha}$$
 (small enough).

▷ It seems open to give a well-posedness result for any ω₀ ∈ B⁰_{1,∞}.
 ▷ When p₀ = ∞:

$$\omega_0 \in \mathbf{B}_{\infty}^{-\frac{1+\alpha}{2}+1}$$

- ▷ In this case, we can apply it to the two dimensional Brownian white noise initial data $\omega_0 \in \mathbf{B}_{\infty}^{-1-}$.
- ▶ Well-posedness for the related mean-field SDE.

- Giga, Miyakawa, Osada (1988) established the existence of 2d Navier-Stokes flow with measures as initial vorticity, the uniqueness only for atomic part of the initial measure being small.
- Gallagher and Gallay (2005) solved the uniqueness problem for the 2d Navier-Stokes equation with a measure as initial vorticity.
- ► Zhang (2021) obtain the existence of weak solutions for mean-field SDE with $b \in L^q L^p$ by the maximal principle, where $\frac{d}{p} + \frac{2}{a} < 2$.
 - Giga, Y., Miyakawa, T., Osada, H.: Two-dimensional Navier-Stokes flow with measures as initial vorticity. Arch. Rational Mech. Anal. 104, 223-250 (1988).
 - Gallagher I. and Gallay T. : Uniqueness for the two-dimensional Navier-Stokes equation with a measure as initial vorticity Math. Ann. 332, 287-327 (2005).
 - Zhang X.: Weak solutions of McKean-Vlasov SDEs with supercritical drifts. To appear in Commun. Math. Stat. Preprint version available at https://arxiv.org/abs/2010.15330 (2021).

► (Well-posedness) $\omega_0 \in \mathbf{B}_{3/\alpha}^0$ and $\omega_0 \in \mathbf{B}_{\infty}^{-(\alpha+1)/2+}$ small enough.

3D case

(Well-posedness) ω₀ ∈ B⁰_{3/α} and ω₀ ∈ B^{-(α+1)/2+} small enough.
 (Decay) for any p ∈ [2, ∞] and β ≥ 0:

$$\|\omega(t)\|_{\mathbf{B}_p^\beta} \lesssim t^{-\frac{3-3/p}{\alpha}}, \quad t \ge 1.$$

 Well-posedness for the related mean-field SDE, which provides a microscopic probabilistic explanation.

Thank you for attention!

Merci beaucoup!