SDEs with supercritical distribution drifts

Zimo Hao

Bielefeld University

Joint work with Xicheng Zhang arXiv:2312.11145

27 June 2024

YSSSA24

Table of contents

1 SDE with singular drifts

2 Weak well-posedness of subcritical SDEs

3 Weak solutions to supercritical SDEs

2 Weak well-posedness of subcritical SDEs

3 Weak solutions to supercritical SDEs

Overview

Consider the following SDE

$$\mathrm{d}X_t = b(t, X_t)\mathrm{d}t + \sqrt{2}\mathrm{d}W_t, \qquad (1)$$

where $(W_t)_{t\geq 0}$ is a standard *d*-dimensional Brownian motion and $b : \mathbb{R}_+ \times \mathbb{R}^d \to \mathbb{R}^d$ is a measurable function.

- \triangleright Weak solution: $(\Omega, \mathscr{F}, \mathbf{P}, (\mathscr{F}_s)_{s>0}, W, X);$
- $\triangleright \quad \text{Strong solution: } (\Omega, \mathscr{F}, \mathbf{P}, (\mathscr{F}_s)_{s \ge 0}, W) \Rightarrow X = \Phi(X_0, W);$
- ▷ Maringale solution: $\mathbb{P} \in \mathscr{P}(\mathcal{C}_T)$, for all $f \in \mathbf{C}^2(\mathbb{R}^d)$

$$f(\omega_t) - f(\omega_0) - \int_0^t (\Delta + b \cdot \nabla) f(\omega_s) ds$$
 is a \mathbb{P} -martingale;

▷ Path-by-path solution: for any path $t \to W_t(\omega)$, the solution solves the ODE (1).

▷ Uniqueness in law; Pathwise uniqueness; Path-by-path uniqueness.

Regularization by noise.

- \triangleright (Stroock-Varadhan): Weak solution \iff Martingale solution;
- \triangleright (Barlow): Uniqueness in law \Rightarrow Existence of strong solution.
- ▷ (Shaposhnikov-Wresch, Anzeletti): Many counterexamples.

- Yamada, T. and Watanabe, S. (1971). On the uniqueness of solutions of stochastic differential equations. J. Math. Kyoto Univ.
- Engelbert, H. J. (1991). On the theorem of T. Yamada and S. Watanabe. *Stochastics Stochastics Rep.*
- Stroock, D. W. and Varadhan, S. S. R. Multidimensional diffusion processes, volume 233 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. *Springer-Verlag, Berlin*, 1979.
- Barlow, M. T. (1982). One-dimensional stochastic differential equations with no strong solution. J. London Math. Soc.
- Shaposhnikov, A. and Wresch, L. (2022). Pathwise vs. path-by-path uniqueness. Ann. Inst. Henri Poincaré Probab. Stat.
- Anzeletti, L. (2022). Comparison of classical and path-by-path solutions to SDEs. arXiv:2204.07866.

What can we say if *b* is not a function?

- ▶ Brox diffusion (white noise); Other noises.
- ▶ $b = \nabla U$ with some Hölder potential;
- (Weak solution): $X_t = X_0 + A_t^b + W_t$, where

$$A_t^b := \lim_{n \to \infty} \int_0^t b_n(s, X_s) \mathrm{d}s$$
 exists.

What can we say if *b* is not a function?

- Brox diffusion (white noise); Other noises.
- ▶ $b = \nabla U$ with some Hölder potential;
- (Weak solution): $X_t = X_0 + A_t^b + W_t$, where

$$A_t^b := \lim_{n \to \infty} \int_0^t b_n(s, X_s) \mathrm{d}s$$
 exists.

► (Martingale solution):

▷ For any $f \in \mathbf{C}_b(\mathbb{R}_+ \times \mathbb{R}^d)$, consider the related BKE

$$\partial_t u + \Delta u + b \cdot \nabla u + f = 0, \quad u(T) = 0$$

We call $\mathbb{P} \in \mathscr{P}(\mathcal{C}_T)$ a martingale solution if

$$u(t,\omega_t) - u(t,\omega_0) - \int_0^t f(r,\omega_r) dr$$
 is a \mathbb{P} -martingale.

N. Ethier and G. Kurtz. Markov Processes: Characterization and Convergence. Wiley series in probability and mathematical statistic. Wiley, 1986.

Scale analysis

► Let $\dot{\mathbf{H}}_{p}^{\alpha}$ be the homogenous Bessel potential space, where $\alpha \leq 0$ and $p \in [1, \infty]$ and suppose for some $q \in [1, \infty]$

$$b \in L^q(\mathbb{R}_+; \dot{\mathbf{H}}_p^\alpha),$$

and SDE (1) admits a solution denoted by *X*. For $\lambda > 0$, we define

$$X_t^{\lambda} := \lambda^{-1} X_{\lambda^2 t}, \quad W_t^{\lambda} := \lambda^{-1} W_{\lambda^2 t}, \quad b^{\lambda}(t, x) := \lambda b(\lambda^2 t, \lambda x).$$

Then we have

$$\mathrm{d}X_t^{\lambda} = b^{\lambda}(t, X_t^{\lambda})\mathrm{d}t + \sqrt{2}\mathrm{d}W_t^{\lambda},$$

where

$$\|b^{\lambda}\|_{L^{q}(\mathbb{R}_{+};\dot{\mathbf{H}}_{p}^{\alpha})}=\lambda^{1+\alpha-\frac{d}{p}-\frac{2}{q}}\|b\|_{L^{q}(\mathbb{R}_{+};\dot{\mathbf{H}}_{p}^{\alpha})}.$$

 $\blacktriangleright As \lambda \to 0,$

Subcritical: $\frac{d}{p} + \frac{2}{q} < 1 + \alpha$; Critical: $\frac{d}{p} + \frac{2}{q} = 1 + \alpha$; Supercritical: $\frac{d}{p} + \frac{2}{q} > 1 + \alpha$.

A well-defined restriction on α

Consider the related PDE:

$$\partial_t u = \Delta u + b \cdot \nabla u + f.$$

- Assume $b \in \mathbb{C}^{\alpha}$ with the differentiability index $\alpha < 0$.
- By the Schauder theory, u is at most in $\mathbb{C}^{2+\alpha}$.
- ► To make the product $b \cdot \nabla u$ meaningful, we need to stipulate that $1 + 2\alpha > 0$, which implies $\alpha > -\frac{1}{2}$.
 - ▷ (Delarue-Diel 2016) rough path & (Cannizzaro-Chouk 2018) paracontrolled calculus: $b \in \mathbb{C}^{-2/3+}$ is some Gaussian noise.
 - ▷ (Question) Arbitrary function b? $\alpha \rightarrow -1$?

Well-known results

SEU: Strong existence-uniqueness; WEU: Weak existence-uniqueness; WE: Weak existence; EUP: Existence-uniqueness of path-by-path solution; EUE: Existence-uniqueness of energy solution.

Value of α	Subcritical	Critical	Supercritical
$\alpha = 0$	$\begin{array}{c} \text{Seu: V}^{79}_{[1]}, \text{KR}^{05}_{[2]}, \text{Z}^{05,10}_{[3,4]} \\ \\ \text{Eup: D}^{07}_{[5]}, \text{ALL}^{23}_{[6]} \end{array}$	Weu&Seu: BFGM ¹⁹ _[7] , $K^{21}_{[8]}$, $RZ^{21}_{[9]}$, $KM^{23}_{[10]}$	WE: ZZ ²¹ [11]
$\alpha \in [-\tfrac{1}{2},0)$	WEU: $BC_{[12]}^{01}$, $FIR_{[13]}^{17}$, $ZZ_{[14]}^{17}$	-	-
$\alpha \in [-1, -\frac{1}{2})$	$EUE: GP^{23}_{[15]}$	-	-

- [1] A. J. Veretennikov. Theory Probab. Appl. 24. [2] N.V. Krylov and M. Röckner. Probab. Theory Related Fields 131.
- [3] X. Zhang. Stochastic Process. Appl. 115/11. [4] X. Zhang. Electron. J. Probab. 16.
- [5] A. M. Davie. Int. Math. Res. Not. IMRN 24. [6] L. Anzeletti, K. Lê and C. Ling. arXiv:2304.06802.
- [7] L. Beck, F. Flandoli, M. Gubinelli and M. Maurelli. Electron. J. Probab. 24.
- [8] N. V. Krylov. Ann. Probab. 49. [9] M. Röckner and G. Zhao. Bernoulli 29 and arXiv:2103.05803.
- [10] D. Kinzebulatov and K. R. Madou. arXiv:2306.04825. [11] X. Zhang and G. Zhao. Commun. Math. Phys. 381.
- [12] R. F. Bass R.F. and Z. Q. Chen. Probability Theory and Related Fields. 121.
- [13] F. Flandoli, E. Issoglio and F. Russo. Trans. Am. Math. Soc. 369. [14] X. Zhang and G. Zhao. arXiv:1710.10537.
- [15] L. Gräfner and N. Perkowski. Lecture note.

2 Weak well-posedness of subcritical SDEs

3 Weak solutions to supercritical SDEs

Weak well-posedness of subcritical SDEs with $\alpha \in (-1, -\frac{1}{2})$

Main results

(H^{sub}) Let $(\alpha, p, q) \in (-1, -\frac{1}{2}] \times [2, \infty)^2$ with $\frac{d}{p} + \frac{2}{q} < 1 + \alpha$. Suppose that $\kappa_1^b := \|b\|_{\mathbb{L}^q_T \mathbf{B}^{\alpha}_{p,q}} < \infty$ and $\kappa_2^b := \|\operatorname{div} b\|_{\mathbb{L}^q_T \mathbf{B}^{-2-\alpha}_{p,q/(q-1)}} < \infty$.

Theorem 1 (H.-Zhang 2023)

Under the condition (\mathbf{H}^{sub}), there is a unique weak solution to SDE (1). Moreover, $t \to A_t^b$ has finite p-variation with some p < 2.

Main results

(H^{sub}) Let $(\alpha, p, q) \in (-1, -\frac{1}{2}] \times [2, \infty)^2$ with $\frac{d}{p} + \frac{2}{q} < 1 + \alpha$. Suppose that $\kappa_1^b := \|b\|_{\mathbb{L}^q_T \mathbf{B}^{\alpha}_{p,q}} < \infty$ and $\kappa_2^b := \|\operatorname{div} b\|_{\mathbb{L}^q_T \mathbf{B}^{-2-\alpha}_{p,q/(q-1)}} < \infty$.

Theorem 1 (H.-Zhang 2023)

Under the condition (\mathbf{H}^{sub}), there is a unique weak solution to SDE (1). Moreover, $t \to A_t^b$ has finite p-variation with some p < 2.

Suppose that $b \in \mathbb{L}_T^q \mathbf{B}_{p,1}^{-1/2}$ with $\frac{d}{p} + \frac{2}{q} < \frac{1}{2}$. Then (\mathbf{H}^{sub}) holds for $\alpha = -\frac{1}{2}$. Moreover, when divb = 0, (\mathbf{H}^{sub}) holds.

▶ For any Lipschitz function $g : \mathbb{R}^d \to \mathbb{R}$,

$$\int_0^t g(X_s) dA_s^b \quad \text{is a Young integral}$$

Example:Gaussian noises

For given $\gamma \in (d-2, d)$, we define the Gaussian noise *b* by the following covariance

$$\mathbb{E}b(f)b(g) = \int_{\mathbb{R}^d} \hat{f}(\xi)\hat{g}(-\xi)|\xi|^{-\gamma} \Big(\mathbb{I}_{d\times d} - \frac{\xi\otimes\xi}{|\xi|^2}\Big)\mathrm{d}\xi.$$

 \blacktriangleright Then we have for almost surely ω

$$b(\omega, \cdot) \in \cap_{p \in [1,\infty)} \mathbf{B}_{p,loc}^{-1+}(\mathbb{R}^d) \quad \operatorname{div} b(\omega) = 0.$$

2 Weak well-posedness of subcritical SDEs

3 Weak solutions to supercritical SDEs

Weak solutions to supercritical SDEs with $\alpha = -1$

The setting

▶ We assume $d \ge 2$, $b \in L^q_T \mathbf{H}_p^{-1}$ with $p, q \in [2, \infty]$,

$$\frac{d}{p} + \frac{2}{q} < 1, \quad \text{div}b = 0.$$

The setting

• We assume $d \ge 2$, $b \in L^q_T \mathbf{H}^{-1}_p$ with $p, q \in [2, \infty]$,

$$\frac{d}{p} + \frac{2}{q} < 1, \quad \operatorname{div} b = 0.$$

► Let $b_n \in \mathbf{C}_b^{\infty}(\mathbb{R}_+ \times \mathbb{R}^d)$ with $\lim_{n\to\infty} \|b_n - b\|_{L^q_T \mathbf{H}_p^{-1}} = 0$ and consider the following approximating SDE

$$X_t^n = X_0 + \int_0^t b_n(s, X_s^n) \mathrm{d}s + \sqrt{2}W_t.$$

▶ We denote the distribution of $(X_t^n)_{t \in [0,T]}$ by $\mathbb{P}_n \in \mathcal{P}(C([0,T]; \mathbb{R}^d))$.

Main results

Theorem 2 (H.-Zhang 2023)

i) For any \mathscr{F}_0 measurable random variable X_0 , $\{\mathbb{P}_n\}_{n=1}^{\infty}$ is **tight** in $\mathscr{P}(C([0, T]; \mathbb{R}^d))$. *ii)* Moreover, if the distribution of X_0 has an L^2 density w.r.t. the Lebesgue measure, then there is a continuous process $(X_t)_{t \in [0,T]}$ such that

$$X_t = X_0 + \lim_{n \to \infty} \int_0^t b_n(r, X_r) \mathrm{d}r + \sqrt{2} W_t,$$

where the limit here is taken in $L^2(\Omega)$.

iii) Let \mathbb{P} be the law of the solution $(X_t)_{t \in [0,T]}$. The following almost surely Markov property holds: there is a Lebesgue zero set $\mathcal{N} \subset (0,T)$ such that for all $s \in [0,T] \setminus \mathcal{N}$

 $\mathbb{E}_{\mathbb{P}}[f(\omega_t)|\mathscr{B}_s] = \mathbb{E}_{\mathbb{P}}[f(\omega_t)|\omega_s], \quad 0 \le s \le t \le T, \ f \in \mathbf{C}_b(\mathbb{R}^d).$

iv)When $b \in L^2([0,T] \times \mathbb{R}^d)$ or $b \in L_T^{\infty} \mathbf{B}_{\infty,2}^{-1}$ (*critical & ill-defined*), there is only one accumulation point of $\{\mathbb{P}_n\}_{n=1}^{\infty}$. That is for any $b_n \to b$, \mathbb{P}_n converges to the distribution of $(X_t)_{t \in [0,T]}$.

Example: Particle system with singular kernels

• Consider the following singular interaction particle system in \mathbb{R}^{Nd} :

$$dX_t^{N,i} = \sum_{j \neq i} \gamma_j K(X_t^{N,i} - X_t^{N,j}) dt + \sqrt{2} dW_t^{N,i}, \ i = 1, \cdots, N,$$
(2)

where $K \in \mathbf{H}_{\infty}^{-1}(\mathbb{R}^d; \mathbb{R}^d)$ is divergence free, $W_t^{N,i}$, $i = 1, \dots, N$ are *N*-independent standard *d*-dimensional Brownian motions, $\gamma_j \in \mathbb{R}$ and initial value has an L^2 -density.

- (Jabin-Wang 2018) Existence of the related FPE and propagation of chaos. (The existence of a solution to the SDE (2) appears to be open).
- ► As a result, we have the weak existence to the *N*-particle system SDE (2).

Example: GFF and super-diffusive

▶ Let d = 2, $\varepsilon \in (0, 1]$ and b_{ε} be a Gaussian field with

$$\mathbb{E}b_{arepsilon}(f)b_{arepsilon}(g) = \int_{|\xi| \leq 1/arepsilon} \hat{f}(\xi)\hat{g}(-\xi)\Big(\mathbb{I}_{d imes d} - rac{\xi\otimes\xi}{|\xi|^2}\Big)\mathrm{d}\xi.$$

• When $\varepsilon \to 0, b := \lim_{\varepsilon} b_{\varepsilon}$ formally satisfies

$$b := \nabla^{\perp} \xi := (-\partial_{x_2} \xi_1, \partial_{x_1} \xi_2) \in \mathbf{C}^{-1-} \quad \operatorname{div} b = 0,$$

where $\xi = \xi(x)$ is the two-dimensional Gaussian Free Field (GFF)

► (Super-diffusive) When $\varepsilon = 1$, $\mathbb{E}|X_t|^2 \approx t\sqrt{\ln t}$ (Cannizzaro-HaunschmidSibitz-Toninelli 2022) (Chatzigeorgiou-Morfe-Otto-Wang 2022).

▶ For any $p \in (2, \infty)$

$$\sup_{\varepsilon<1/2} \|\frac{b_{\varepsilon}}{\sqrt{\ln(1/\varepsilon)}}\|_{\mathbf{H}_{p,loc}^{-1}} < \infty, \quad a.s.$$

By our results, one sees that the solutions $\{X_t^{\varepsilon}\}_{[0,T]}$ to the following approximation SDEs is tight

$$\mathrm{d}X_t^{\varepsilon} = \frac{b_{\varepsilon}(X_t^{\varepsilon})}{\sqrt{\ln(1/\varepsilon)}}\mathrm{d}t + \sqrt{2}\mathrm{d}W_t.$$

Example: GFF and super-diffusive

$$\mathrm{d}X_t^\varepsilon = \frac{b_\varepsilon(X_t^\varepsilon)}{\sqrt{\ln(1/\varepsilon)}}\mathrm{d}t + \sqrt{2}\mathrm{d}W_t.$$

- X_t^{ε} convergences to a Brownian motion as $\varepsilon \to 0$.
- Imply the assumption $\alpha \ge -1$ is sharp.

Thank you!