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Overview

▶ Consider the following SDE

dXt = b(t,Xt)dt +
√

2dWt, (1)

where (Wt)t≥0 is a standard d-dimensional Brownian motion and b : R+ ×
Rd → Rd is a measurable function.

▷ Weak solution: (Ω,F ,P, (Fs)s≥0,W,X);
▷ Strong solution: (Ω,F ,P, (Fs)s≥0,W) ⇒ X = Φ(X0,W);
▷ Maringale solution: P ∈ P(CT), for all f ∈ C2(Rd)

f (ωt)− f (ω0)−
∫ t

0
(∆ + b · ∇)f (ωs)ds is a P-martingale;

▷ Path-by-path solution: for any path t → Wt(ω), the solution solves the ODE (1).
▷ Uniqueness in law; Pathwise uniqueness; Path-by-path uniqueness.

▶ Regularization by noise.
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▷ (Stroock-Varadhan): Weak solution ⇐⇒ Martingale solution;

▷ (Barlow): Uniqueness in law ⇏ Existence of strong solution.

▷ (Shaposhnikov-Wresch, Anzeletti): Many counterexamples.
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What can we say if b is not a function?

▶ Brox diffusion (white noise); Other noises.

▶ b = ∇U with some Hölder potential;

▶ (Weak solution): Xt = X0 + Ab
t + Wt, where

Ab
t := lim

n→∞

∫ t

0
bn(s,Xs)ds exists.

▶ (Martingale solution):
▷ For any f ∈ Cb(R+ × Rd), consider the related BKE

∂tu +∆u + b · ∇u + f = 0, u(T) = 0.

We call P ∈ P(CT) a martingale solution if

u(t, ωt)− u(t, ω0)−
∫ t

0
f (r, ωr)dr is a P-martingale.

▷ N. Ethier and G. Kurtz. Markov Processes: Characterization and Convergence. Wiley series in probability and

mathematical statistic. Wiley, 1986.
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Scale analysis
▶ Let Ḣα

p be the homogenous Bessel potential space, where α ≤ 0 and p ∈ [1,∞]
and suppose for some q ∈ [1,∞]

b ∈ Lq(R+; Ḣα
p ),

and SDE (1) admits a solution denoted by X. For λ > 0, we define

Xλ
t := λ−1Xλ2t, Wλ

t := λ−1Wλ2t, bλ(t, x) := λb(λ2t, λx).

▶ Then we have

dXλ
t = bλ(t,Xλ

t )dt +
√

2dWλ
t ,

where

∥bλ∥Lq(R+;Ḣα
p ) = λ

1+α− d
p −

2
q ∥b∥Lq(R+;Ḣα

p ).

▶ As λ → 0,

Subcritical: d
p + 2

q < 1 + α;

Critical: d
p + 2

q = 1 + α;

Supercritical: d
p + 2

q > 1 + α.
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A well-defined restriction on α

▶ Consider the related PDE:

∂tu = ∆u + b · ∇u + f .

▶ Assume b ∈ Cα with the differentiability index α < 0.

▶ By the Schauder theory, u is at most in C2+α.

▶ To make the product b · ∇u meaningful, we need to stipulate that
1 + 2α > 0, which implies α > − 1

2 .
▷ (Delarue-Diel 2016) rough path

& (Cannizzaro-Chouk 2018) paracontrolled calculus: b ∈ C−2/3+

is some Gaussian noise.
▷ (Question) Arbitrary function b? α → −1?
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Well-known results
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Weak well-posedness of subcritical SDEs

with α ∈ (−1,−1
2)

11/21



Main results
(Hsub) Let (α, p, q) ∈ (−1,− 1

2 ]× [2,∞)2 with d
p + 2

q < 1 + α. Suppose that

κb
1 := ∥b∥Lq

T Bα
p,q

< ∞ and κb
2 := ∥divb∥Lq

T B−2−α
p,q/(q−1)

< ∞.

Theorem 1 (H.-Zhang 2023)

Under the condition (Hsub), there is a unique weak solution to SDE
(1). Moreover, t → Ab

t has finite p-variation with some p < 2.

▶ Suppose that b ∈ Lq
T B−1/2

p,1 with d
p + 2

q < 1
2 . Then (Hsub) holds for α = − 1

2 .
Moreover, when divb = 0, (Hsub) holds.

▶ For any Lipschitz function g : Rd → R,∫ t

0
g(Xs)dAb

s is a Young integral.
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Example:Gaussian noises

▶ For given γ ∈ (d − 2, d), we define the Gaussian noise b by the
following covariance

Eb(f )b(g) =
∫
Rd

f̂ (ξ)ĝ(−ξ)|ξ|−γ
(
Id×d −

ξ ⊗ ξ

|ξ|2
)

dξ.

▶ Then we have for almost surely ω

b(ω, ·) ∈ ∩p∈[1,∞)B−1+
p,loc (R

d) divb(ω) = 0.
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Weak solutions to supercritical SDEs
with α = −1

15/21



The setting

▶ We assume d ≥ 2, b ∈ Lq
TH−1

p with p, q ∈ [2,∞],

d
p
+

2
q
< 1, divb = 0.

▶ Let bn ∈ C∞
b (R+ × Rd) with limn→∞ ∥bn − b∥Lq

T H−1
p

= 0 and
consider the following approximating SDE

Xn
t = X0 +

∫ t

0
bn(s,Xn

s )ds +
√

2Wt.

▶ We denote the distribution of (Xn
t )t∈[0,T] by Pn ∈ P(C([0,T];Rd)).
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Main results
Theorem 2 (H.-Zhang 2023)

i) For any F0 measurable random variable X0, {Pn}∞n=1 is tight in P(C([0, T];Rd)).

ii) Moreover, if the distribution of X0 has an L2 density w.r.t. the Lebesgue measure,
then there is a continuous process (Xt)t∈[0,T] such that

Xt = X0 + lim
n→∞

∫ t

0
bn(r,Xr)dr +

√
2Wt,

where the limit here is taken in L2(Ω).

iii) Let P be the law of the solution (Xt)t∈[0,T]. The following almost surely Markov
property holds: there is a Lebesgue zero set N ⊂ (0, T) such that for all
s ∈ [0, T)\N

EP[f (ωt)|Bs] = EP[f (ωt)|ωs], 0 ≤ s ≤ t ≤ T, f ∈ Cb(Rd).

iv)When b ∈ L2([0, T]× Rd) or b ∈ L∞
T B−1

∞,2 (critical & ill-defined), there is only

one accumulation point of {Pn}∞n=1. That is for any bn → b, Pn converges to the
distribution of (Xt)t∈[0,T].
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Example: Particle system with singular kernels

▶ Consider the following singular interaction particle system in RNd:

dXN,i
t =

∑
j̸=i

γjK(XN,i
t − XN,j

t )dt +
√

2dWN,i
t , i = 1, · · · ,N, (2)

where K ∈ H−1
∞ (Rd;Rd) is divergence free, WN,i

t , i = 1, · · · ,N are N-independent
standard d-dimensional Brownian motions, γj ∈ R and initial value has an L2-
density.

▶ (Jabin-Wang 2018) Existence of the related FPE and propagation of chaos. (The
existence of a solution to the SDE (2) appears to be open).

▶ As a result, we have the weak existence to the N-particle system SDE (2).
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Example: GFF and super-diffusive
▶ Let d = 2, ε ∈ (0, 1] and bε be a Gaussian field with

Ebε(f )bε(g) =
∫
|ξ|≤1/ε

f̂ (ξ)ĝ(−ξ)
(
Id×d −

ξ ⊗ ξ

|ξ|2
)

dξ.

▶ When ε → 0, b := limε bε formally satisfies

b := ∇⊥ξ := (−∂x2ξ1, ∂x1ξ2) ∈ C−1− divb = 0,

where ξ = ξ(x) is the two-dimensional Gaussian Free Field (GFF)
▶ (Super-diffusive)

When ε = 1, E|Xt|2 ≍ t
√
ln t

(Cannizzaro-HaunschmidSibitz-Toninelli 2022)
(Chatzigeorgiou-Morfe-Otto-Wang 2022).

▶ For any p ∈ (2,∞)

sup
ε<1/2

∥ bε√
ln(1/ε)

∥H−1
p,loc

< ∞, a.s.

By our results, one sees that the solutions {Xε
t }[0,T] to the following approxima-

tion SDEs is tight

dXε
t =

bε(Xε
t )√

ln(1/ε)
dt +

√
2dWt.
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Example: GFF and super-diffusive

▶ (Yang-Yang 2024):

dXε
t =

bε(Xε
t )√

ln(1/ε)
dt +

√
2dWt.

▶ Xε
t convergences to a Brownian motion as ε → 0.

▶ Imply the assumption α ≥ −1 is sharp.
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Thank you!
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