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Motivation

� Consider the following N-particles system:{
dXN,i

t = VN,i
t dt,

dVN,i
t = b(ZN,i

t )dt + 1
N

∑
j 6=i K(XN,i

t − XN,j
t )dt +

√
2dBi

t,

where i = 1, 2, ..,N

• ZN,i = (XN,i,VN,i) ∈ R2d: position and velocity of particle num-
ber i

• b: the force field depending on both position and velocity

• K: interaction kernel.

• Bi: independent Brownian motions (random phenomena)
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DDSDE
� When b and K are smooth, the solution of the N-particles system

ZN,i convergences to the solution to the following Distribution
Dependent SDE (DDSDE):{

dXt = Vtdt
dVt = b(Zt)dt +

∫
Rd K(Xt − y)µt(dy)dt + dBt,

(1)

where µt is the distribution of Xt and Bt is a standard BM.

� Well-known results
Jabin and Wang (JFA-16) Assume K ∈ L∞. Well-posedness for Fokker-
Plank equation and propagation of chaos.
Chaudru de Raynal (AIHP-15) Assume K ≡ 0 and b ∈ Cαx ∩ Cβv with
α > 2

3 , β > 0. Well-posedness for SDE equation (1).
Zhang (China Math-18) Assume K ≡ 0 and (1 − ∆x)

1
3 b ∈ Lp with

p > 2(2d + 1). Well-posedness for SDE equation (1).
Wang and Zhang (SIAM-16) Hölder Dini assumption
Chaudru de Raynal, Honoré and Menozii 18 Chain case
Chen and Zhang (JMPA-18) & Hao, Wu and Zhang (JMPA-20) Non-local case
Jair 19 & Lacker 21 Propagation and chaos
· · · · · · · · ·
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Motivation

� Recently, the study of the SDEs driven by singular drift b is more
and more popular, especially the distribution case. Such singular
diffusions appear as models for stochastic processes in random
media, i.e. b would also be random, but independent of BM B.

� For the following first order SDE:

dXt = b(Xt)dt + dBt,

• Brox (AoP-86): Brox diffusion (b is a space white noise)
• Delarue and Diel (PTRF-16): 1-d distribution drift b (Rough path)
• Cannizzaro and Chouk (AoP-18): Multidimensional case with dis-

tribution drift b (Paracontrolled calculus).

� (Question:)
Could we understand the kinetic DDSDE (1) with singular noise
b?
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Our model

� Let b be a Gaussian noise in R2d with spectral measure µ, i.e. for
any f , g ∈ S (R2d),

E[〈b, f 〉〈b, g〉] =

∫
R2d

f̂ (ζ)ĝ(−ζ)µ(dζ).

• For example, when µ(dζ) = dζ is the Lebsgue measure of R2d, b
is a white noise in R2d; when µ(dζ) = δ(dξ)dη with ζ = (ξ, η) ∈
R2d, b(x, v) = b(v) is the white noise in Rd

v .
• When b is a white noise, b ∈ C−

1
2− is not a function, but only a

distribution.
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Our model

� Consider the following kinetic DDSDE with distribution drift b
and interaction kernel K,{

dXt = Vtdt
dVt = b(Zt)dt +

∫
Rd K(Xt − y)µt(dy)dt + dBt.

(?)

� (Questions:)
• Definition-Nonlinear martingale problem

-Paracontrolled calculus
• Existence and Uniqueness-what’s the condition of µ and K.
• Propagation of chaos
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Kinetic operator

� To set up the martingale problem to DDSDE (?), it is important
to establish the well-posedness for the related PDE:

∂tu = ∆vu + v · ∇xu + b · ∇u + f , u(0) = ϕ, (SKE)

where u = u(t, z) = u(t, x, v).

� The following operator is called kinetic operator

L := ∂t −∆v − v · ∇x.
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Kinetic operator
� In 1934, Kolmogorov found the fundamental solution of L is the

density pt(x, v) of the process
(√

2
∫ t

0 Bsds,
√

2Bt

)
and

pt(x, v) =
(2πt4

3

)− d
2

exp
(
− 3|x|2 + |3x− 2tv|2

4t3

)
.

� More precisely, for any z = (x, v), denote by the semigroup

Ptf (z) := Γtpt ∗ Γtf (z) = Ef
(

x + tv +
√

2
∫ t

0
Bsds, v + Bt

)
,

where
Γtf (z) := f (Γtz) := f (x + tv, v).

Then,

u(t) := Ptϕ+

∫ t

0
Pt−sf (s)ds

solves the following kinetic equation:

L u = f , u(0) = ϕ.
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Scaling
� Notice that

pt(x, v) = t−2dp1(t
3
2 x, t

1
2 v).

� The scaling of x and v is 3 : 1 in the kinetic equations. So, it is
nature to consider the following metric:

|z1 − z2|a := |x1 − x2|
1
3 + |v1 − v2|, zi := (xi, vi), i = 1, 2.

� For any α > 0, define the anistrophic Hölder-Zygmund space Cα
a

with the following norm

‖f‖Cαa := ‖f‖∞ + sup
h6=0

‖δ[α]+1
h f‖∞
|h|a

,

where [] is the Gauss function and δhf (z) := f (z + h)− f (z).
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Anistropic Besov space

� For α < 0, we need Besov space to extend the definition of
anistropic Hölder-Zygmund space Cα

a .

� Let
Bj := {ζ ∈ R2d, 2j−1 < |ζ|a < 2j+1/3}

for j ≥ 0 and B−1 := {|ζ| < 2/3}.
� By a technical construction, there is a unity of partition
{φa

j }j≥−1 ⊂ C∞0 belonging to ∪j≥−1Bj and

φa
j (ξ, η) = φa

0(2−3jξ, 2−jη).
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Anistrophic Besov space

� For given j ≥ −1, the block operatorRa
j is defined on S ′ by

Ra
j f (z) := F−1(φa

j F (f ))(z) = F−1(φa
j ) ∗ f (z).

� For any α ∈ R, p, q ∈ [1,∞], define the anistrophic Besov space
Ba,α

p,q with the following norm:

‖f‖Bα,ap,q
:=
( ∑

i≥−1

2αqj‖Ra
j f‖q

p

) 1
q
.

� It is well-known that for α > 0, Cα
a = Ba,α

∞,∞. For simplicity, we
denote by

Cα
a := Ba,α

∞,∞

for all α ∈ R in the sequel.
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Weighted anistrophic Besov space

� The noise has a blow up when the position-velocity space R2d is
not compact. We need a weight to balance the increasing (blow
up) as z→∞ in R2d

� Let PW be the set of all function in the following form

ρδ(z) = ((1 + |x|2)1/3 + |v|2)−δ/2 � (1 + |z|a)−δ, δ ∈ R.

� For any α ∈ R and ρ ∈ PW , define the weight anistrophic
Besov space Cα

a (ρ) with the following norm:

‖f‖Cαa (ρ) := ‖ρf‖Cαa .
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Kinetic Hölder space
� Recall

Γtf (z) := f (Γtz), Γtz := (x + tv, v).

� Let α ∈ (0, 2), ρ ∈PW and T > 0. Define

SαT,a(ρ) :=
{

f : ‖f‖SαT,a(ρ) := ‖f‖L∞T Cαa (ρ) + ‖f‖Cα/2
T;Γ L∞(ρ)

<∞
}
,

where for β ∈ (0, 1),

‖f‖CβT;ΓL∞(ρ)
:= sup

06t6T
‖f (t)‖L∞(ρ)

+ sup
0<|t−s|61

‖f (t)− Γt−s f (s)‖L∞(ρ)

|t − s|β
.

� The reason why we introduce this kinetic Hölder space is because

‖Pt f − Γt f‖∞ ≤ Cδt
δ
2 ‖f‖Cδa δ ∈ (0, 2).
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Schauder’s estimate

� Denote by

I :=

∫ t

0
Pt−s ds.

Theorem 1 (Schauder’s estimate)
Let β ∈ (0, 2) and ρ ∈PW . For any T > 0, there is a constant
C = C(d, β, ρ,T) > 0 such that for all f ∈ L∞T C−βa (ρ),

‖I f‖S2−β
T,a (ρ)

≤ C‖f‖L∞T C−βa (ρ)
.
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Linear singular kinetic equation

� Consider the following kinetic equation

∂tu = ∆vu + v · ∇xu + b · ∇vu + f , u(0) = ϕ.

� We are interested in the following noise b

b ∈ C−αa (ρκ), α ∈ (
1
2
,

2
3

) and κ ∈ (0, 1).

� By Schauder’s estimate, the best regularity of the solution u is in

L∞([0,T]; C2−α
a (ρκ)).
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Difficulties

1 (ill-defined problem) b · ∇vu does not make sense since

C−αa × C1−α
a 3 (b,∇vu)→ b · ∇vu ∈ Cα∧(1−α)

a only if 1− 2α > 0.

2 (weight lose problem) The weight ρκ here always make technical
difficult, roughly speaking,

u ∈ C···a (ρκ) + b ∈ C···a (ρκ)⇒ b · ∇vu ∈ C···a (ρ2κ).

By Schauder’s estimate again,

u ∈ C···a (ρ2κ)⇒ b · ∇vu ∈ C···a (ρ3κ)⇒ u ∈ C···a (ρ3κ),

⇒ u ∈ C···a (ρ∞κ) blow up!
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Methods to solve the difficulties
1 (Paracontrolled calculus) Transfer the ill-defined problem from

b · ∇vu to b · ∇vI b.

from
∫ t

0
f (ws)dws to

∫ t

0
wsdws similar in rough path.

More precisely, let u = u(b, b · ∇vI b).
• This method was first proposed by Gubinelli, Imkeller and Perkowski

in 2015 for ∂t −∆.
• However, our model is ∂t −∆v − v · ∇x. This kinetic operator is

not a multiplication operator like ∂t −∆.
• It is interesting and not easy to establish the paracontrolled calcu-

lus for the kinetic equations.

2 (Localization)
• This method is in Zhang, Zhu and Zhu’s paper: arXiv:2007.06783

for ∂t −∆.
• Key points:

‖f‖Cβ(ρ) � sup
z
ρ(z)‖fχz‖Cβ

and
|∇vρ(z)| . ρ1(z)ρ(z).
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Renormalization of Gauss noise b

� Recall that

E[〈b, f 〉〈b, g〉] =

∫
R2d

f̂ (ζ)ĝ(−ζ)µ(dζ).

� Suppose that for ζ = (ξ, η) ∈ R2d

µ(dξ, dη) = µ(−dξ, dη) = µ(dξ,−dη).

(Hβ) For some β ∈ (1
2 ,

2
3),

sup
ζ′∈R2d

∫
R2d

µ(dζ)

(1 + |ζ + ζ ′|a)2β <∞.
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Main result for linear kinetic equations

Theorem 2
Let α ∈ (1

2 ,
2
3), ϑ := 9

2−3α , κf ∈ R,

δ := (2ϑ+ 2)κ 6 1 and κ̄ := (2ϑ+ 1)κ+ κf .

Assume that (Hβ) holds for some β < α. For any T > 0, κ > 0,

f ∈ L∞T Cα−1+
a (ρκf ) or f = b, and ϕ ∈ Cα+1+

a (ρκf−κ),

there is a unique paracontrolled solution u ∈ S2−α
T,a (ρκ̄) to PDE (SKE).
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Examples

1 For any λ ∈ (d − 1
3α, d),

µ(dζ) =
dξ
|ξ|λ

δ(dη), ζ = (ξ, ζ),

where dξ is the Lebsgue measure on Rd and δ(dη) is the Dirac
measure.
When d = 1,

b(x, v) = b(x) = ∂xBH(x)

is the derivative of a fractional BM with Hurst parameter H = 1+λ
2 .

22/35



Examples

1 For any λ ∈ (d − 1
3α, d), µ(dζ) = dξ

|ξ|λ δ(dη).

2 For any λ ∈ (d − 2α, d) and λ ≥ 0,

µ(dζ) = δ(dξ)
dη
|η|λ

, ζ = (ξ, ζ).

When d = 1, λ = 0 is admissible, this time b(x, v) = ξ(v) is a
space white noise on Rv.
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Examples

1 For any λ ∈ (d − 1
3α, d), µ(dζ) = dξ

|ξ|λ δ(dη).

2 For any λ ∈ (d − 2α, d) and λ ≥ 0, µ(dζ) = δ(dξ) dη
|η|λ .

3 For any λ1, λ2 ∈ [0, d) with 3λ1 + λ2 > 4d − 2α,

µ(dζ) =
dξdη
|ξ|λ1 |η|λ2

, ζ = (ξ, ζ).

Notice that, when d = 1, λ2 = 0 is admissible.
In this case, b can be regarded as the white noise in v-part.
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Singular kinetic DDSDE
� Now, let’s go back to the original problem:{

dXt = Vtdt
dVt = b(Zt)dt +

∫
Rd K(Xt − y)µt(dy)dt + dBt,

(?)

where b ∈ C−αa (ρκ) for some α ∈ (1
2 ,

2
3), κ > 0 and satisfying

the condition (Hβ) with some β < α.

� Let P(E) be the set of all probability measures over some Banach
space E. Denote by Pδ(R2d) be the space of all ν ∈ P(R2d) with∫

R2d
ρ−δ(z)ν(dz) �

∫
R2d

(1 + |z|a)δν(dz) <∞, δ ≥ 0.

� For any T > 0, denote by CT := C([0,T];R2d) and let Bt be the
natural σ-filtration, and z be the canonical process over CT , i.e.

zt(ω) = (xt(ω), vt(ω)) = ωt, ω ∈ CT .
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� For any T > 0, denote by CT := C([0,T];R2d) and let Bt be the
natural σ-filtration, and z be the canonical process over CT , i.e.

zt(ω) = (xt(ω), vt(ω)) = ωt, ω ∈ CT .
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Nonlinear martingale problem

� For any continuous curve µ : [0,T] → P(Rd) with respect to the
weak convergence, define

L µ
t := ∆v + v · ∇x + (b + K ∗ µt) · ∇v.

� Let f ∈ L∞T Cb(R2d), ϕ ∈ Cα+1+
a (R2d) and ϑ = 9

2−3α . We
call (u, f , ϕ) ∈ AµT if u ∈ S2−α

T;a (ρ2(ϑ+1)κ) is the paracontrolled
solution to the following linear kinetic equation:

∂tu + L µ
t u = f , u(T) = ϕ.
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Nonlinear martingale problem

Definition 3 (Nonlinear martingale problem)
Let δ > 0. A probability measure P ∈ P(CT) is called a nonlinear
martingale solution to DDSDE (?) starting from ν ∈ Pδ(R2d), if
P ◦ z−1

0 = ν and for all (u, f , ϕ) ∈ AµT ,

Mt := u(t, zt)− u(0, z0)−
∫ t

0
f (s, zs)ds

is a P-martingale respect to (Bt)t∈[0,T], where µt = P ◦ x−1
t .

Theorem 4 (Main result)
Assume that (Hβ) and K ∈ C

α−1+
3 . For any δ > 0, there exists at least

one nonlinear martingale solution to DDSDE (?). Moreover, if K is
bounded measurable, then there exists at most one solution.

28/35



Nonlinear martingale problem

Definition 3 (Nonlinear martingale problem)
Let δ > 0. A probability measure P ∈ P(CT) is called a nonlinear
martingale solution to DDSDE (?) starting from ν ∈ Pδ(R2d), if
P ◦ z−1

0 = ν and for all (u, f , ϕ) ∈ AµT ,

Mt := u(t, zt)− u(0, z0)−
∫ t

0
f (s, zs)ds

is a P-martingale respect to (Bt)t∈[0,T], where µt = P ◦ x−1
t .

Theorem 4 (Main result)
Assume that (Hβ) and K ∈ C

α−1+
3 . For any δ > 0, there exists at least

one nonlinear martingale solution to DDSDE (?). Moreover, if K is
bounded measurable, then there exists at most one solution.

28/35



N-particle system with singular drift

� Recall the following N-particles system:{
dXN,i

t = VN,i
t dt,

dVN,i
t = b(ZN,i

t )dt + 1
N

∑
j 6=i K(XN,i

t − XN,j
t )dt +

√
2dBi

t.

(N )

� Denote by B(z) := B(z1, .., zN) := (b(z1), ..., b(zN)). Then,

B(z) · ∇vINB(z) = (b · ∇v1I b(z1), ..., b · ∇v1I b(zN))

is well-defined, where IN := I ⊗N .

� Hence, by the same argument above, we have the well-posedness
for the linear martingale problem to N-particle system (N ).
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Propagation of chaos
� Denote by µN ∈ P(CT) and µ ∈ P(CT) be the distribution of

ZN,i and the distribution to the solution of non-linear martingale
problem respectively.

� Let bn be the modifier of b.
� Denote by µN

n ∈ P(CT) and µn ∈ P(CT) be the distribution of
the i-th particle in the N-particle system (N ) with b = bn and the
distribution to the solution of DDSDE with b = bn respectively.

� (Lacker 2021)

‖µN
n − µn‖TV ≤ 4

√
T(1 + ‖K‖2

∞)e3T‖K‖2
∞

1
N
.

� Notice that the constant

C := 4
√

T(1 + ‖K‖2
∞)e3T‖K‖2

∞

is independence of n!
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Propagation of chaos
� By the argument in DDSDE, we have for any N ∈ N,

µN
n → µN , µn → µ weakly as n→∞.

�
µN

w

��

µN
n

woo

TV

��
µ µn

woo

� For precisely, for any f ∈ Cb(CT),

|µ(f )− µN(f )| ≤ lim
n→∞

|µ(f )− µn(f )|

+ sup
n
|µn(f )− µN

n (f )|

+ lim
n→∞

|µN(f )− µN
n (f )|

≤ C
N
‖f‖∞.
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Nonlinear Fokker-Planck equation
� Finally, we’d like to study the density of the martingale solution

to DDSDE.
� (Question:)

1 Whether the solution admit a density?
2 Whether the density satisfy the following Fokker-Plank equation:

∂tu = ∆vu− v · ∇u− divv

(
(b + K ∗ 〈u〉)u

)
, u(0) = u0,

where 〈u〉(t, x) :=
∫
Rd u(t, x, v)dv and ν(dz) = u0(z)dz?

Assumption: b is the Gauss noise satisfying (Hβ) with β < α and

divvb ≡ 0 and u0 ∈ L1 ∩ Cα+1+
a .

� Consider the following singular kinetic Fokker-Planck equation

∂tu + v · ∇x = ∆vu + b · ∇vu + K ∗ 〈u〉 · ∇vu, u(0) = u0.

Here 〈u〉(t, x) :=
∫
Rd u(t, x, v)dv.
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Conditions

(H1) K ∈ ∪β>α−1Cβ/3.

(H2) K is bounded, for some k > 0,

‖ρ−ku0‖L1 �
∫
R2d

(1 + |z|a)ku0(z)dz <∞ (energy condition).

and

H(u0) :=

∫
R2d

u0 ln u0dz <∞ (entropy condition).

(H3) ∫
R2d

u0(z)dz = 1 (mass condition).
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Main result
Theorem 5
Let α ∈ (1

2 ,
2
3) and (Hβ) hold for some β < α.

1 Under the condition (H1), there is at least a solution u ∈ L∞T (C2−α
a (ρ))

to nonlinear Fokker-Planck equation with some weight ρ ∈PW .

2 Under the condition (H2), the solution is unique with

‖ρ−ku(t)‖L1 ≤ C‖ρ−ku0‖L1(energy estimate);

H(u(t)) ≤ H(u0)(entropy estimate).

3 Under the condition (H1), (H2) and (H3), there is a unique solution
u with u ≥ 0 and∫

R2d
u(t, z)dz = 1(mass conservation).

Moreover, u is the density to the solution of the nonlinear martin-
gale problem with initial data ν(dz) = u0(z)dz.
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Thank you!
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